yinwu33 / lidarSLAM_learning
深蓝学院 激光slam理论与实践 作业
☆21Updated 3 years ago
Alternatives and similar repositories for lidarSLAM_learning
Users that are interested in lidarSLAM_learning are comparing it to the libraries listed below
Sorting:
- Calibrate extrinsic parameters of multi-lidars, based on ICP or NDT, etc.☆50Updated 3 years ago
- Linear Rotation Calibration about Lidar-Imu☆78Updated 2 years ago
- 《自动驾驶中的SLAM技术》对应开源代码 1. 添加详细代码注释 2. 添加深蓝第一期课后习题与大作业的修改(若想要原始的激光SLAM定位与建图的效果,请前往高博github拉取最新分支)☆45Updated last year
- Modified simple version based on LIO-SAM.☆74Updated 2 years ago
- The code for calibration between lidars. (Chinese Version)☆80Updated 3 years ago
- Loam_Livox相关论文、代码中文注释以及代码改动☆21Updated 3 years ago
- 添加了地面约束的3D版本Cartographer,更多改进详见readme。☆85Updated 2 years ago
- FAST_LIO相关论文、代码中文注释以及代码改动☆66Updated 3 years ago
- ieskf lio☆90Updated last month
- ☆112Updated 2 years ago
- 使用手眼标定法计算Lidar和INS(RTK or IMU)的相对姿态☆126Updated 4 years ago
- A simple GNSS positioning and display demo(三维位姿数据显示在Google地图上)☆51Updated 2 years ago
- 一个基于迭代误差状态卡尔曼滤波(IESKF)的Livox-IMU车载SLAM系统实现☆82Updated 3 years ago
- 深蓝学院-多传感器融合定位-第二期☆59Updated 4 years ago
- LiDAR SLAM: Scan Context + LeGO-LOAM☆24Updated 4 years ago
- slam lib☆22Updated last year
- Faster-LIO (添加中文注释)☆59Updated 3 years ago
- Dynamic Map benchmark implementation☆26Updated 9 months ago
- A variety of ICP algorithm implementation, can be used to do comparative testing. Include ICP_CERES, ICP_G2O,ICP_SVD etc.☆56Updated last year
- ☆45Updated last year
- A Robust LiDAR-Inertial Odometry for 3D LiDAR☆73Updated 2 years ago
- 多传感器融合定位模块,可融合IMU/GNSS/ODOM/LIDAR等传感器数据完成高精度定位,输出位置、速度、姿态等导航结果☆48Updated 4 years ago
- open source slam system notes☆147Updated 3 years ago
- LIO-SAM 代码注释+逻辑梳理☆28Updated 3 years ago
- [ROBIO 2021] Pole-like Objects Mapping and Long-Term Robot Localization in Dynamic Urban Scenarios☆127Updated last year
- A Modified LIO-SAM for 6-axes imu☆34Updated last year
- hdl_graph_slam 简单中文注释版,如果有错欢迎在issue处讨论,指出☆52Updated 6 years ago
- S-LOAM(Simple LOAM) 是一种简单易学的激光SLAM算法,整个程序只有几百行代码,十分方便学习与试验分析。☆64Updated 3 years ago
- backup of irapkaist/scancontext☆67Updated 3 years ago
- ☆58Updated 3 years ago