AlexGeControl / Sensor-Fusion-for-Localization-Courseware
Multi-sensor fusion for localization courseware, 深蓝学院, China
☆137Updated 2 years ago
Related projects ⓘ
Alternatives and complementary repositories for Sensor-Fusion-for-Localization-Courseware
- lio-sam代码注释☆135Updated 3 years ago
- ☆75Updated 3 years ago
- Sensor Fusion for Localization & Mapping☆190Updated 3 years ago
- FAST_LIO2_Noted 中文注释版☆171Updated 6 months ago
- open source slam system notes☆147Updated 3 years ago
- Chinese annotated version of A-LOAM☆148Updated 4 years ago
- ☆107Updated last year
- A Multi-sensor Fusion Odometry via Smoothing and Mapping.☆212Updated 2 years ago
- LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping☆255Updated last year
- Lidar-IMU Localization System with Prior Map Constraint and Lio Constraint☆226Updated last year
- ☆58Updated 3 years ago
- VINS-Fusion源码详细注释,单双目、IMU、GPS☆105Updated 3 years ago
- ☆173Updated 4 years ago
- A ros tool for converting Robosense pointcloud to Velodyne pointcloud format.☆189Updated last year
- ☆244Updated 3 years ago
- Code for simplified LIO-SAM☆217Updated last year
- FASTER-LIO-SAM: A SLAM system based on iVox and GTSAM.☆263Updated last year
- 中文文档:IMU预积分总结与公式推导☆137Updated 5 years ago
- IESKF-LIO reference to fast_lio1.0(参考fast-lio早期版本,复现的fast-lio2)☆249Updated last year
- 使用手眼标定法计算Lidar和INS(RTK or IMU)的相对姿态☆121Updated 3 years ago
- Efficient Online Segmentation of Ground&Wall Points for Multi-line Spinning LiDARs. //在线分割激光点云中的地面点和墙面点。☆167Updated 2 years ago
- ROS Wrapper for imu_tk☆93Updated 6 years ago
- A simple implementation of occupancy grid mapping.☆124Updated 6 months ago
- 仅用于学习☆64Updated 2 years ago
- an improved version of vins-mono☆106Updated 4 years ago
- gps_imu_fusion with eskf,ekf,ukf,etc☆111Updated 2 years ago
- Easy description to run and evaluate Lego-LOAM with KITTI-data☆137Updated 3 years ago
- Tools for self-driving car☆100Updated 3 years ago
- 「香港大学 MaRS 实验室」开源 ikd-Tree 算法中文注释版;新增了header-only分支,便于直接嵌入工程。☆146Updated last year
- LVI-SAM for easier using (更简单的使用LVI-SAM的方法)☆233Updated last year