lgy112112 / Transformer-WalkThroughLinks
A Chinese-based Repo for Transformer Starters on Its Everything.
☆32Updated 5 months ago
Alternatives and similar repositories for Transformer-WalkThrough
Users that are interested in Transformer-WalkThrough are comparing it to the libraries listed below
Sorting:
- LLM大模型(重点)以及搜广推等 AI 算法中手写的面试题,(非 LeetCode),比如 Self-Attention, AUC等,一般比 LeetCode 更考察一个人的综合能力,又更贴近业务和基础知识一 点☆314Updated 6 months ago
- ☆414Updated 2 months ago
- 大模型/LLM推理和部署理论与实践☆293Updated this week
- llm相关内容,包括:基础知识、八股文、面经、经典论文☆149Updated last year
- 《动手学深度学习》习题解答,在线阅读地址如下:☆482Updated last year
- 《动手做科研》面向科研初学者,一步一步地展示如何入门人工智能科研☆427Updated 4 months ago
- DL & ML & RS☆421Updated 7 months ago
- 一个简单的多模态RAG项目☆147Updated 2 months ago
- An awesome resume template.☆141Updated 4 months ago
- 算法岗面试资料-百面深度学习、百面机器学习书籍等等☆56Updated 2 years ago
- ☆119Updated 3 years ago
- Learning LLM Implementaion and Theory for Practical Landing☆172Updated 6 months ago
- 模型压缩的小白入门教程,PDF下载地址 https://github.com/datawhalechina/awesome-compression/releases☆304Updated last month
- ☆239Updated 2 months ago
- a chinese tutorial of git☆155Updated last year
- ☆184Updated this week
- 算法岗笔试面试大全,励志做算法届的《五年高考,三年模拟》!☆535Updated 3 months ago
- 基于 KelvinQiu802/llm-mcp-rag 的 Python 实现版本,用于学习和实践 LLM、MCP 和 RAG 技术☆98Updated 3 months ago
- 中文翻译的 Hands-On-Large-Language-Models (hands-on-llms),动手学习大模型☆1,170Updated last week
- A simple and trans-platform rag framework and tutorial☆205Updated this week
- Learning Large Language Model (LLM)(大语言模型学习)☆741Updated 3 months ago
- 通过带领大家解读Transformer模型来加深对模型的理解☆202Updated last month
- ✔️(持续更新)李沐 【动手学深度学习v2 PyTorch版】课程学习笔记,更正了AccumulateMore笔记的部分错误,从更加初级的角度做了部分内容补充☆161Updated last year
- 🐳 LeetCode 算法笔记:面试、刷题、学算法。在线阅读地址:https://datawhalechina.github.io/leetcode-notes/☆891Updated last week
- 复现大模型相关算法及一些学习记录☆1,868Updated last month
- 一个很小很小的RAG系统☆262Updated 2 months ago
- ☆54Updated 8 months ago
- 从零实现一个小参数量中文大语言模型。☆731Updated 10 months ago
- Building BERT Model with PyTorch☆20Updated 7 months ago
- Use interactive notebook to break down MiniMind code and learn from scratch.☆64Updated 3 months ago