ws13685555932 / 18.065_lecture_notesLinks
lecture notes of "Matrix Methods in Data Analysis, Signal Processing, and Machine Learning"
☆150Updated 5 years ago
Alternatives and similar repositories for 18.065_lecture_notes
Users that are interested in 18.065_lecture_notes are comparing it to the libraries listed below
Sorting:
- 张志华机器学习导论 MOOC 讲义☆130Updated 3 years ago
- More PRML Errata☆80Updated 2 years ago
- 🌀 Stanford CS 228 - Probabilistic Graphical Models☆121Updated 6 years ago
- 斯坦福数值分析公开课的学习资料☆142Updated 6 years ago
- CS231n Assignments Solutions - Spring 2020☆48Updated 4 years ago
- Matrix Calculus via Differentials, Matrix Derivative, 矩阵求导教程☆284Updated 2 years ago
- Stanford CS229 (Autumn 2017)☆364Updated 7 years ago
- ☆121Updated 5 years ago
- MIT 18.03 微分方程(Differential Equations)中文笔记☆91Updated last month
- ☆153Updated 5 years ago
- ☆172Updated 6 years ago
- Jupyter notebooks for summarizing and reproducing the textbook "The Elements of Statistical Learning" 2/E by Hastie, Tibshirani, and Frie…☆288Updated 7 years ago
- ☆28Updated 6 years ago
- This is a note on matrix derivatives and described my own experience in detail. Hope you'll like it.☆559Updated 6 years ago
- b站@shuhuai008的白板推导系列课程手写笔记,补充了一些用到的数学基础知识。☆71Updated 4 years ago
- 🥚 Stanford CS221: Artificial Intelligence: Principles and Techniques☆81Updated 6 years ago
- 台大机器学习课程作业详解☆299Updated 6 years ago
- ☆229Updated 2 years ago
- 机器学习白板推导系列笔记总结☆31Updated 5 years ago
- A Chinese Notes of MLAPP,MLAPP 中文笔记项目 https://zhuanlan.zhihu.com/python-kivy☆364Updated 4 years ago
- ☆24Updated 8 years ago
- notes of machine learning algorithm derivation☆776Updated 5 years ago
- 🌲 Stanford CS 228 - Probabilistic Graphical Models☆133Updated 9 months ago
- 记录Learning from data一书中的习题解答☆991Updated 6 years ago
- CS229 Solution (summer 2019, 2020).☆16Updated last year
- My Own Solution Manual of PRML☆985Updated 4 years ago
- Stanford CS229 (Autumn 2017)☆30Updated 7 years ago
- 这是北京大学在coursera上开设的「程序设计与算法」专项课程☆184Updated 5 years ago
- My solutions to Kevin Murphy Machine Learning Book☆539Updated 4 years ago
- 机器学习的预备知识(矩阵论,概率论,凸优化等)☆46Updated 8 years ago