nanguoyu / StudentGradeRegressionLinks
[大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩
☆47Updated 7 years ago
Alternatives and similar repositories for StudentGradeRegression
Users that are interested in StudentGradeRegression are comparing it to the libraries listed below
Sorting:
- 该工程是利用python3.6进行“特征提取+分类器”来实现美团评论的文本二分类问题。在特征提取部分提取了6种特征,分类器选择了python里面的包xgboost和lightGBM分别实现提升树和GBDT(梯度提升决策树)。☆94Updated 6 years ago
- Python实现经典分类回归、关联分析、聚类以及推荐算法等☆213Updated 6 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆245Updated 6 years ago
- 使用支持向量机,感知机,随机森林,决策树,k近邻,logistic,LSTM,bagging,boosting,集成等多种常见算法实现多分类任务(三分类)。Support vector machine, perceptron, random forest, decision…☆18Updated 5 years ago
- 基于pytorch进行文本多分类,主要模型为双向LSTM,预测准确率83%☆43Updated 5 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 一些机器学习算法的demo。普通最小二乘法,决策树(Iris鸢尾花数据集),KNN(mnist手写数字数据集),朴素贝叶斯分类西瓜数据集,trec06c数据集垃圾邮件分类(spam),逻辑斯蒂回归,随机梯度下降SGD与全梯度下降的对比,mnist中8和9的二分类,泰坦尼克号…☆189Updated 7 years ago
- 时间序列ARIMA模型的销量预测☆65Updated 7 years ago
- 回归问题是数据挖掘和机器学习中常常出现的问题----本专题以 中国移动用户信用分预测 为例,对比分析几类 常见的回归算法,包括:线性回归、岭回归、贝叶斯岭回归、前馈神经网络、迭代提升树等。☆18Updated 6 years ago
- 软件工程课程设计项目/Lab409:基于词典方法和机基于器学习方法的中文情感倾向分析(Web)☆126Updated 7 years ago
- 利用Python实现三层BP神经网络☆84Updated 7 years ago
- 机器学习实践:贷款违约预测☆39Updated 6 years ago
- 基于kaggle上Titanic数据集实现的ID3、C4.5、CART和CART剪枝算法☆41Updated 6 years ago
- 一个基本的多层lstm rnn模型,能实现中英文文本的二分类或多分类☆48Updated 7 years ago
- 基于ARIMA时间序列的销量预测模型,实际预测准确率达90%以上,内含有测试记录和实际上线效果。☆109Updated 6 years ago
- 感知器、贝叶斯分类、决策树分类、K最近邻法、逻辑回归、支持向量机...☆128Updated 11 years ago
- 基于Python实现了K-Means、GMM、DBSCAN、AGNES等四种常见的聚类算法☆72Updated 6 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆57Updated 7 years ago
- 情感分析三分类☆29Updated last year
- 整理记录本人担任课程助教设计的四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类。内附实验指导书、讲解PPT、参考代码,欢迎各位码友讨论交流。☆121Updated 7 years ago
- 基于深度学习的新闻分类推荐系 统(Spring Boot作为客户端,Keras作为服务端)☆52Updated 5 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆25Updated 6 years ago
- 本系列代码主要是作者Python人工智能之TensorFlow的系列博客,涉及回归神经网络、CNN、RNN、TensorFboard等内容。基础性代码,希望对您有所帮助。☆106Updated 8 months ago
- 基于深度学习(LSTM)的情感分析(京东商城数据)☆183Updated 5 years ago
- 本项目主要是利用LSTM来对中文文本进行情感分类,包含四个类别(愤怒,焦虑,抑郁,伤感)☆58Updated 6 years ago
- 以京东评论作为数据集,使用常见的机器学习算法如KNN、SVM、逻辑回归、贝叶斯、xgboost等等算法进行分类。使用深度学习中的CNN、RNN、CNN和RNN连接、Bi-GRU、bert模型进行分类。使用fastnlp的框架搭建文本分类。☆32Updated 5 years ago
- 基于CNN+Bi-LSTM+Attention 的自动对对联系统☆219Updated 5 years ago
- 本程序实现决策树的建立与可视化,以及决策树的预剪枝与后剪枝,数据集为西瓜书4.2、4.3节中的西瓜数据集☆39Updated 6 years ago
- 朴素贝叶斯中文垃圾邮件分类器☆74Updated 9 years ago
- 朴素贝叶斯实现的文本分类(新闻分类)☆66Updated 9 years ago