nanguoyu / StudentGradeRegression
[大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩
☆45Updated 6 years ago
Alternatives and similar repositories for StudentGradeRegression:
Users that are interested in StudentGradeRegression are comparing it to the libraries listed below
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 5 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆70Updated 4 years ago
- 使用支持向量机,感知机,随机森林,决策树,k近邻,logistic,LSTM,bagging,boosting,集成等多种常见算法实现多分类任务(三分类)。Support vector machine, perceptron, random forest, decision…☆16Updated 4 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆54Updated 4 years ago
- 时间序列ARIMA模型的销量预测☆60Updated 6 years ago
- 机器学习实践:贷款违约预测☆36Updated 5 years ago
- 利用Python实现三层BP神经网络☆80Updated 6 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆39Updated 5 years ago
- 整理记录本人担任课程助教设计的四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类。内附实验指导书、讲解PPT、参考代码,欢迎各位码友讨论交流。☆115Updated 6 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆81Updated 4 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆60Updated 4 years ago
- 基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。☆21Updated 4 years ago
- 使用k-means算法实现对用户金融数据的聚类分析☆11Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆143Updated 4 years ago
- Python 建立的BP神经网络处理预测相关公交线路数据☆36Updated 7 years ago
- 基于Python实现了K-Means、GMM、DBSCAN、AGNES等四种常见的聚类算法☆67Updated 5 years ago
- 利用爬虫获取58同城的二手房信息,选取特征并对数据进行预处理,利用机器学习算法给出不同地段的租房推荐。☆14Updated 5 years ago
- 利用时间序列预测汽车销量☆37Updated 6 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆34Updated 5 years ago
- 统计分析课程实验作业/包含《统计分析方法》中因子分析,主成分分析,Kmeans聚类等典型算法的手写实现☆74Updated 4 years ago
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆38Updated last year
- 基于pytorch进行文本多分类,主要模型为双向LSTM,预测准确率83%☆42Updated 4 years ago
- 利用CNN,LSTM,CNN_LSTM,TextCNN,Bi-LSTM和传统的机器学习算法进行情感分析,参考:https://github.com/Edward1Chou/SentimentAnalysis☆86Updated 6 years ago
- 不同时间序列预测方法对上海旅游规模进行预测☆16Updated 5 years ago
- 基于粒子群算法的神经网络优化股票价格预测☆33Updated 4 years ago
- 基于ARIMA时间序列的销量预测模型,实际预测准确率达90%以上,内含有测试记录和实际上线效果。☆99Updated 5 years ago
- 一些机器学习算法的demo。普通最小二乘法,决策树(Iris鸢尾花数据集),KNN(mnist手写数字数据集),朴素贝叶斯分类西瓜数据集,trec06c数据集垃圾邮件分类(spam),逻辑斯蒂回归,随机梯度下降SGD与全梯度下降的对比,mnist中8和9的二分类,泰坦尼克号…☆175Updated 6 years ago