KangCai / Machine-Learning-AlgorithmLinks
【Numpy 手写实现】SVM 支持向量机 | KNN K近邻 | Kmeans | Logistic Regression 逻辑回归 | Maximum Entropy 最大熵 | Naive Bayes 朴素贝叶斯 | Perception 感知机 | Decision Tree 决策树 | Random Forest 随机森林 | DBDT | GDA 高斯判别分析 | PCA 主成分分析 | LDA 线性判别分析
☆208Updated 5 years ago
Alternatives and similar repositories for Machine-Learning-Algorithm
Users that are interested in Machine-Learning-Algorithm are comparing it to the libraries listed below
Sorting:
- 集成学习Stacking方法详解☆74Updated 5 years ago
- 基于遗传算法的特征选择☆128Updated 5 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆83Updated 5 years ago
- Python实现经典分类回归、关联分析、聚类以及推荐算法等☆214Updated 6 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆116Updated 4 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆166Updated 5 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆287Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- 基于kaggle上Titanic 数据集实现的ID3、C4.5、CART和CART剪枝算法☆41Updated 6 years ago
- 用Python实现SVM多分类器☆407Updated last year
- 统计分析课程实验作业/包含《统计分析方法》中因子分析,主成分分析,Kmeans聚类等典型算法的手写实现☆77Updated 5 years ago
- 通过阅读网上的资料代码,进行自我加工,努力实现常用的机器学习算法。实现算法有KNN、Kmeans、EM、Perceptron、决策树、逻辑回归、svm、adaboost、朴素贝叶斯☆732Updated 5 years ago
- 决策树、随机森林☆49Updated 6 years ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆143Updated 3 years ago
- python实现的随机森林☆100Updated 2 years ago
- 使用sklearn做特征工程☆172Updated 6 years ago
- 一些机器学习算法的demo。普通最小二乘法,决策树(Iris鸢尾花数据集),KNN(mnist手写数字数据集),朴素贝叶斯分类西瓜数据集,trec06c数据集垃圾邮件分类(spam),逻辑斯蒂回归,随机梯度下降SGD与全梯度下降的对比,mnist中8和9的二分类,泰坦尼克号…☆180Updated 6 years ago
- 慕课网上深度学习之神经网络(CNN RNN GAN)算法原理+实战练习的代码和部分数据☆40Updated 5 years ago
- 西瓜书,课后习题☆131Updated 3 years ago
- 机器学习预测模型 ,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆55Updated 5 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆45Updated 6 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆155Updated 8 years ago
- 为机器学习的入门者提供多种基于实例的sklearn、TensorFlow以及自编函数(AnFany)的ML算法程序。☆435Updated 3 years ago
- 本程序实现决策树的建立与可视化,以及决策树的预剪枝与后剪枝,数据集为西瓜书4.2、4.3节中的西瓜数据集☆36Updated 5 years ago
- 整理记录本人担任课程助教设计的四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类。内附实验指导书、讲解PPT、参考代码,欢迎各位码友讨论交流。☆115Updated 7 years ago
- 决策树分类与回归模型的实现和可视化☆16Updated 3 years ago
- 模型优化调参---网格搜索(五折交叉验证)☆11Updated 6 years ago