aflyingpig0226 / feature-engineering
机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。
☆25Updated 6 years ago
Alternatives and similar repositories for feature-engineering:
Users that are interested in feature-engineering are comparing it to the libraries listed below
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆41Updated 5 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- 利用时间序列预测汽车销量☆38Updated 6 years ago
- 数据预处理之缺失值处理,特征选择☆21Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆54Updated 4 years ago
- 智能供应链分析,对顾客用rfm模型分类,用多种机器学习模型建模,进行欺诈订单预测,延迟发货预测,销售额预测,销售数量预测☆31Updated 4 years ago
- 分析银行营销活动数据以预测客户有多大可能购买存款产品☆12Updated 5 years ago
- 2019年CCF智能信用评分大赛个人源码库。包含XGboost模型调参,特征筛选,训练等方案。同时包含stacking模型融合方案☆27Updated 4 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆116Updated 4 years ago
- 构建基于逻辑回归的评分卡模型☆44Updated 6 years ago
- 整理所有特征工程用到的方法,为了复用☆10Updated 4 years ago
- 时间序列ARIMA模型的销量预测☆62Updated 6 years ago
- CCF BDCI 2022比赛 返乡发展人群预测赛题 Baseline 数据挖掘(特征工程+集成学习)队伍排名39/2297☆11Updated last year
- 不同时间序列预测方法对上海旅游规模进行预测☆17Updated 6 years ago
- 交易欺诈作为信用卡行业面临的主要贷后风险业务问题,每年都使信用卡行业遭受巨额损失。基于大数据机器学习开发出高效的交易欺诈识别模型一直是金融行业的主要挑战之一。本次大赛以此作为主题☆41Updated 6 years ago
- 《应用时间序列分析》易丹辉、王燕著; 案例Python实现☆16Updated 5 years ago
- Python与机器学习方向,《决策树与集成算法》课程仓库☆24Updated 6 years ago
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆42Updated last year
- 基于Keras的LSTM多变量时间序列预测☆23Updated 7 years ago
- 改进的k-prototypes聚类算法☆18Updated 4 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆73Updated 4 years ago
- 利用python对3000个数据利用 机器学习算法建立模型,并预测未来客户信用风险。处理数据不均衡问题时采用了SMOTE过采样以及随机过采样技术;通过相关性分析进行特征选择;建模过程中用到了Logistic回归、SVM、随机森林、GBDT四种模型,并通过网格搜索法确定最优参数…☆30Updated 2 years ago
- 使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM…☆44Updated 4 years ago
- 基于ARIMA时间序列的销量预测模型,实际预测准确率达90%以上,内含有测试记录和实际上线效果。☆102Updated 5 years ago
- 基于seq2seq模型的风功率预测☆28Updated 5 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆36Updated 6 years ago
- 使用LSTM预测商品销量,考虑销量激增点影响☆33Updated 5 years ago
- 基于波士顿房屋租赁价格数据,使用lasso回归算法做特征选择后,分别使用线性回归、Lasso回归、Ridge回归、Elasitic Net四类回归算法构建模型(分别测试1,2,3阶)☆13Updated 5 years ago
- 基于自构造函数的特征提取评分项目(缺失值处理,单变量相关性分析,特征评分,降维)☆15Updated 7 years ago