Leo1998-Lu / Machine-learning-on-irisLinks
基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。
☆22Updated 5 years ago
Alternatives and similar repositories for Machine-learning-on-iris
Users that are interested in Machine-learning-on-iris are comparing it to the libraries listed below
Sorting:
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆79Updated 5 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆176Updated 5 years ago
- bp 神经网络算法☆124Updated 2 years ago
- Python 基于BP神经网络实现鸢尾花的分类☆352Updated 5 years ago
- 人工智能结课作业(A星八数码/广度优先/深度优先/粒子群寻优算法/遗传算法/蚁群算法/BP神经网络/卷积神经网络)☆451Updated 2 years ago
- 支持向量机的python实现☆47Updated 10 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- python 用GA算法优化BP神经网络☆158Updated 4 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆46Updated 6 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 决策树分类(ID3,C4.5,CART)☆482Updated last year
- python实现的随机森林☆101Updated 3 years ago
- 本程序实现决策树的建立与可视化,以及决策树的预剪枝与后剪枝,数据集为西瓜书4.2、4.3节中的西瓜数据集☆37Updated 5 years ago
- 客流量时间序列预测模型☆126Updated 3 years ago
- 粒子群算法优化支持向量机☆139Updated 3 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆156Updated 8 years ago
- Sklearn机 器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆83Updated 5 years ago
- Pytorch、Scikit-learn实现多种分类方法,包括逻辑回归(Logistic Regression)、多层感知机(MLP)、支持向量机(SVM)、K近邻(KNN)、CNN、RNN,极简代码适合新手小白入门,附英文实验报告(ACM模板)☆425Updated 4 years ago
- 基于遗传算法的BP网络设计,应用背景为交通流量的预测☆165Updated 6 years ago
- 基于SVM的简单机器学习分类,可以使用svm, knn, 朴素贝叶斯,决策树四种机器学习方法进行分类☆117Updated 2 years ago
- 集成学习Stacking方法详解☆76Updated 5 years ago
- 用Python实现SVM多分类器☆414Updated last year
- 时间序列ARIMA模型的销量预测☆62Updated 7 years ago
- 交通枢纽客流量预测算法模型☆17Updated 5 years ago
- 基于深度学习的共享单车预测与调度解决方案,使用神经网络构建单车需求量与时间段和地理画像的关联,预测不同区域单车需求量;使用蚁群算法规划最优单车调度路径。☆102Updated 6 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆240Updated 6 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆63Updated 5 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆54Updated 7 years ago
- 包含灰色预测模型:灰色单变量预测模型GM(1,1)模型,灰色多变量预测模型GM(1,N)模型,GM(1,N)幂模型,灰色多变量周期幂模型GM(1,N|sin)幂模型,以及灰色关联模型☆79Updated 3 years ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆147Updated 4 years ago