superlich7 / caffeLinks
This fork of BVLC/Caffe is dedicated to supporting Cambricon deep learning processor and improving performance of this deep learning framework when running on Machine Learning Unit(MLU).
☆41Updated 5 years ago
Alternatives and similar repositories for caffe
Users that are interested in caffe are comparing it to the libraries listed below
Sorting:
- CN-GDB, the BANG-C source-level debugger on Linux, based on GDB-7.11.☆4Updated 5 years ago
- examples for tvm schedule API☆101Updated 2 years ago
- CNStream is a streaming framework for building Cambricon machine learning pipelines http://forum.cambricon.com https://gitee.com/Solu…☆51Updated 3 months ago
- ☆31Updated 2 years ago
- 动手学习TVM核心原理教程☆62Updated 4 years ago
- heterogeneity-aware-lowering-and-optimization☆255Updated last year
- Development repository for the Triton-Linalg conversion☆189Updated 5 months ago
- Subpart source code of of deepcore v0.7☆27Updated 5 years ago
- tophub autotvm log collections☆69Updated 2 years ago
- Efficient operation implementation based on the Cambricon Machine Learning Unit (MLU) .☆123Updated 2 weeks ago
- code reading for tvm☆76Updated 3 years ago
- ☆97Updated 3 years ago
- [MLSys 2021] IOS: Inter-Operator Scheduler for CNN Acceleration☆200Updated 3 years ago
- TVM tutorial☆66Updated 6 years ago
- Automatic Schedule Exploration and Optimization Framework for Tensor Computations☆176Updated 3 years ago
- ☆195Updated 2 years ago
- A home for the final text of all TVM RFCs.☆105Updated 9 months ago
- symmetric int8 gemm☆66Updated 5 years ago
- 面向产业应用的AI开源评测基准☆11Updated 2 years ago
- benchmark for embededded-ai deep learning inference engines, such as NCNN / TNN / MNN / TensorFlow Lite etc.☆204Updated 4 years ago
- ☆17Updated 5 years ago
- An unofficial cuda assembler, for all generations of SASS, hopefully :)☆83Updated 2 years ago
- ☆40Updated 3 years ago
- ☆149Updated 6 months ago
- Generate a quantization parameter file for ncnn framework int8 inference☆519Updated 4 years ago
- Fast CUDA Kernels for ResNet Inference.☆175Updated 6 years ago
- Efficient Sparse-Winograd Convolutional Neural Networks (ICLR 2018)☆191Updated 6 years ago
- GPU implementation of Winograd convolution☆10Updated 7 years ago
- ☆147Updated 6 months ago
- ☆99Updated 3 months ago