3030712382 / 2022-C-Links
python实现2022美赛C题(时间序列预测,Apriori关联规则算法...)
☆11Updated 3 years ago
Alternatives and similar repositories for 2022-C-
Users that are interested in 2022-C- are comparing it to the libraries listed below
Sorting:
- Problem E of the 2023 Huawei Cup Graduate Mathematical Modeling Competition (2023年华为杯研究生数学建模E题)☆28Updated last year
- 2021年研究生数学建模竞赛B题,全国二等奖,空气质量预报二次建模,时间序列数据分析与回归预测。Time Series Prediction&Air Quality Prediction.☆40Updated 3 years ago
- 这是2023华为软件精英挑战赛 初赛阶段319万分的代码,广西省第一名,粤港澳区排名第8。该比赛要求选手在一个50m*50m的地图上,控制4台机器人进入任务调度,设计机器人的运动算法、路径规划算法、任务调度算法,去分布在地图上的各种类型的工作台购买或者出售商品,赚取差价,以…☆17Updated 2 years ago
- Deep Reinforcement Learning (RL) for target tracking with Autonomous Underwater Vehicles (AUV) using SB3 and HoloOcean simulator☆74Updated this week
- LSTM-MPC: Deep Learning Based Predictive Control for Multimode Process Control☆49Updated 3 months ago
- 启发式算法包括动态规划(DP) 、遗传算法(GA)、 粒子群算法(PSO)、 模拟退火算法(SA) 、蚁群算法(ACO)、 自适应神经网络(SOM) 、禁忌搜索算法(TS)☆17Updated last year
- FFDN: fused fuzzy deep neural network (PyTorch)☆20Updated 4 years ago
- 这个仓库用于记录我每周分享的技术内容文档。 This repository is used to document my weekly technical sharing content.☆68Updated 2 months ago
- ☆15Updated 2 years ago
- 使用PPO算法+OU噪声进行机械臂轨迹规划仿真☆18Updated last year
- ☆61Updated 3 weeks ago
- 深度强化学习各算法介绍与Pytorch实现☆68Updated last year
- A Pytorch implementation of Generative Adversarial Network for Heuristics of Sampling-based Path Planning☆56Updated last year
- This repository implements a robust Min-Max Nonlinear Model Predictive Control (NMPC) approach for tracking control of nonlinear systems …☆21Updated 4 months ago
- Code for the paper "Practical Probabilistic Model-based Deep Reinforcement Learning by Integrating Dropout Uncertainty and Trajectory Sam…☆13Updated 11 months ago
- Official Code Repository for Sim-to-Real Deep Reinforcement Learning for UAV Obstacle Avoidance Under Measurement Uncertainty☆15Updated 2 years ago
- A framework and method to jointly learn a (neural) control objective function and a time-warping function only from sparse demonstrations…