ZhouM1118 / intelligentler-bp-ga
基于BP算法和遗传算法建立武汉市空气质量指数的预测模型,以武汉市8个监测站的1年的空气质量数据为训练数据进行神经网络的建模,近一个月的数据作为测试数据进行模型的准确性测试,平均准确率在75%左右。
☆30Updated 7 years ago
Alternatives and similar repositories for intelligentler-bp-ga:
Users that are interested in intelligentler-bp-ga are comparing it to the libraries listed below
- Python 建立的BP神经网络处理预测相关公交线路数据☆36Updated 7 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆51Updated 7 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆44Updated 6 years ago
- Python 机器学习实战:根据成绩预测大学生能否被高校录取☆11Updated 5 years ago
- 基于Keras的LSTM多变量时间序列预测☆176Updated 7 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆37Updated 6 years ago
- 决策树、随机森林☆49Updated 6 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆42Updated 5 years ago
- bp 神经网络算法☆122Updated 2 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆74Updated 4 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆231Updated 6 years ago
- 利用爬虫获取58同城的二手房信息,选取特征并对数据进行预处理,利用机器学习算法给出不同地段的租房推荐。☆15Updated 5 years ago
- 时间序列ARIMA模型的销量预测☆63Updated 6 years ago
- 使用bp神经网络预测股票价格。BP neural network is used to predict the stock price.☆36Updated 4 years ago
- Python实现经典分类回归、关联分析、聚类以及推荐算法等☆212Updated 6 years ago
- 客流量时间序列预测模型☆121Updated 3 years ago
- python 用GA算法优化BP神经网络☆156Updated 4 years ago
- 基于卡口实时过车数据进行交通流量的实时预测分析,使用LSTM循环神经网络模型进行融合预测,准确率达到90%以上。☆55Updated 4 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆154Updated 8 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- 用 jupyter notebook做的一些机器学习项目☆81Updated 5 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆55Updated 5 years ago
- 基于粒子群算法的神经网络优化股票价格预测☆33Updated 4 years ago
- 基于pytorch进行文本多分类,主要模型为双向LSTM,预测准确率83%☆42Updated 4 years ago
- 基于kaggle上Titanic数据集实现的ID3、C4.5、CART和CART剪枝算法☆40Updated 6 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆82Updated 5 years ago