sctpan / WQMFS
Water Quality Management and Forecasting System(水质管理与预测系统)
☆32Updated last year
Related projects ⓘ
Alternatives and complementary repositories for WQMFS
- 水质预测系统,利用机器学习进行水质预测☆70Updated 2 years ago
- 智能供应链分析,对顾客用rfm模型分类,用多种机器学习模型建模,进行欺诈订单预测,延迟发货预测,销售额预测,销售数量预测☆28Updated 4 years ago
- 2018比赛-大数据-光伏电站-人工智能运维☆23Updated 6 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆53Updated 7 years ago
- 基于Keras的LSTM多变量时间序列预测☆174Updated 6 years ago
- 城市交通流量时空预测---山东省数据应用(青岛)创新创业大赛。http://sdac.qingdao.gov.cn/common/cmptIndex.html☆33Updated 4 years ago
- 基于双向堆叠LSTM的电力负荷预测系统☆15Updated 4 years ago
- 时间序列ARIMA模型的销量预测☆60Updated 6 years ago
- 基于BP算法和遗传算法建立武汉市空气质量指数的预测模型,以武汉市8个监测站的1年的空气质量数据为训练数据进行神经网络的建模,近一个月的数据作为测试数据进行模型的准确性测试,平均准确率在75%左右。☆28Updated 7 years ago
- ☁Air pollution visualization and forecasting platform based on Spring Cloud(基于Spring Cloud的环境污染物数据分析与预测平台)☆42Updated 2 years ago
- 基于卡口实时过车数据进行交通流量的实时预测分析,使用LSTM循环神经网络模型进行融合预测,准确率达到90%以上。☆49Updated 4 years ago
- 客流量时间序列预测模型☆111Updated 2 years ago
- 金融反欺诈预测系统,技术涉及Vue3、Flask、XGBoost等。本项目提供了完整的Web系统,系统功能包括信贷数据分析、信贷欺诈数据检测、用户历史预测记录、用户数据管理等。项目整体并不复杂,适合新手练手学习机器学习与Web系统的结合。☆36Updated 2 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆34Updated 5 years ago
- 利用时间序列预测汽车销量☆37Updated 5 years ago
- 2018光伏发电预测比赛,结果a榜22/801 ,b榜44/801☆55Updated 6 years ago
- 基于ARIMA时间序列的销量预测模型,实际预测准确率达90%以上,内含有测试记录和实际上线效果。☆97Updated 5 years ago
- 基于深度学习的共享单车预测与调度解决方案,使用神经网络构建单车需求量与时间段和地理画像的关联,预测不同区域单车需求量;使用蚁群算法规划最优单车调度路径。☆84Updated 5 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆24Updated 5 years ago
- 建立SARIMA-LSTM混合模型预测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆65Updated 5 years ago
- a model for traffic flow forecast☆28Updated 5 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆38Updated 4 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆50Updated 4 years ago
- 本项目为时间序列预测项目,主要重点在于对预测项目整体流程的梳理总结,不同框架下如何进行简单数据处理和模型搭建。因此项目中搭建的主要为一些常用模型(后续会不断修改完善)。模型包含了prophet模型、keras库的bp神经网络和lstm网络模型、pytorch …☆18Updated last year
- 基于粒子群算法的神经网络优化股票价格预测☆31Updated 4 years ago
- Python 机器学习实战:根据成绩预测大学生能否被高校录取☆11Updated 5 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆63Updated 4 years ago
- 电力系统短期负荷预测☆38Updated 3 years ago