tjhznb666 / Predicting-future-customer-credit-risk-based-on-machine-learning-algorithmLinks
利用python对3000个数据利用机器学习算法建立模型,并预测未来客户信用风险。处理数据不均衡问题时采用了SMOTE过采样以及随机过采样技术;通过相关性分析进行特征选择;建模过程中用到了Logistic回归、SVM、随机森林、GBDT四种模型,并通过网格搜索法确定最优参数;利用准确率、KS值、ROC曲线、AUC值以及lift曲线进行模型评估。
☆31Updated 3 years ago
Alternatives and similar repositories for Predicting-future-customer-credit-risk-based-on-machine-learning-algorithm
Users that are interested in Predicting-future-customer-credit-risk-based-on-machine-learning-algorithm are comparing it to the libraries listed below
Sorting:
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆41Updated last year
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 基于机器学习的信用风险评估模型,主要使用了Sklearn库,通过逻辑回归,向量机等模型,根据借款人的个人身份 信息评估是否应当发放贷款。☆17Updated 3 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆63Updated 4 years ago
- 基于粒子群算法的神经网络优化股票价格预测☆33Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆56Updated 5 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- 利用爬虫获取58同城的二手房信息,选取特征并对数据进行预处理,利用机器学习算法给出不同地段的租房推荐。☆15Updated 5 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆45Updated 6 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆37Updated 6 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆169Updated 5 years ago
- 机器学习应用平台/数据预测/文本分类☆12Updated 6 years ago
- Python 建立的BP神经网络处理预测相关公交线路数据☆37Updated 7 years ago
- 决策树、随机森林☆49Updated 6 years ago
- 对截止至2017年7月17日的债券违约事件进行梳理归因,并寻找宏观流动性影响因素,组成数据集。运用Lasso回归进行特征提取后,输入带L2惩罚项LR、SVM、NN、GBDT、RF等机器学习模型进行违约预测,得出GBDT预测效果最好以及特征工程对线性模型预测效果具有重要性的结…☆56Updated 6 years ago
- 数据预处理之缺失值处理,特征选择☆21Updated 6 years ago
- 模型优化调参---网格搜索(五折交叉验证)☆11Updated 6 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- 某电商手机评论的文本挖掘初体验 功能板块:数据预处理、LDA模型获取特征词、情感极性判断与程度计算、回归模型预测销量排序☆121Updated 6 years ago
- 通过聚类分析交易流水检测异常交易☆19Updated last year
- 交易欺诈作为信用卡行业面临的主要贷后风险业务问题,每年都使信用卡行业遭受巨额损失。基于大数据机器学习开发出高效的交易欺诈识别模型一直是金融行业的主要挑战之一。本次大赛以此作为主题☆43Updated 6 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆76Updated 4 years ago
- kaggle贷款违约预测 :主要研究如何借助非平衡数据分类的思想对银行等金融机构的历史贷款数据进行分析,并基于随机森林分类模型预测贷款违约的可能性☆20Updated 6 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆45Updated 6 years ago
- 逻辑回归预测违约可能☆32Updated 7 years ago
- 智能风控 python金融风险管理与评分卡建模 数据和代码☆22Updated 3 years ago
- 基于遗传算法的特征选择☆128Updated 5 years ago
- 机器学习实践:贷款违约预测☆37Updated 5 years ago
- 使用决策树进行客户流失预测分析☆11Updated 7 years ago