goodboyv / Sklearn_Mochine_leanring
利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等
☆159Updated 4 years ago
Alternatives and similar repositories for Sklearn_Mochine_leanring:
Users that are interested in Sklearn_Mochine_leanring are comparing it to the libraries listed below
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆55Updated 5 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆41Updated 5 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆82Updated 4 years ago
- python实现的随机森林☆95Updated 2 years ago
- 实验源代码-----基于随机森林的气温预测☆42Updated 4 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆62Updated 4 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆74Updated 4 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆45Updated 6 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆186Updated 4 years ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿 法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆142Updated 3 years ago
- 基于SVM的简单机器学习分类,可以使用svm, knn, 朴素贝叶斯,决策树四种机器学习方法进行分类☆113Updated 2 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆117Updated 4 years ago
- Python 基于BP神经网络实现鸢尾花的分类☆347Updated 4 years ago
- 使用bp神经网络预测股票价格。BP neural network is used to predict the stock price.☆35Updated 4 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆14Updated 6 years ago
- 随机森林,该模型用于预测气候温度☆15Updated 2 years ago
- 【Numpy 手写实现】SVM 支持向量机 | KNN K近邻 | Kmeans | Logistic Regression 逻辑回归 | Maximum Entropy 最大熵 | Naive Bayes 朴素贝叶斯 | Perception 感知机 | Decision…☆206Updated 5 years ago
- 《Python数据预处理技术与实践》源码下载☆200Updated 5 years ago
- 利用回归模型实现房价预测☆45Updated 6 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆154Updated 8 years ago
- 1、BP-momentum神经网络numpy实现及Pytorch实现及各optim在AQI数据集的表现。2、BP网络分类☆38Updated 4 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 机器学习项目实战☆174Updated 4 years ago
- 集成学习Stacking方法详解☆74Updated 5 years ago
- 逻辑回归、时间序列、KNN、朴素贝叶斯、决策树、关联规则、线性回归、神经网络、SVM、模型评估以及提高模型性能☆15Updated 6 years ago
- 基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。☆21Updated 5 years ago
- 常见机器学习算法回归、分类应用示例,调参;包括基础的线性回归算法、集成学习、支持向量机等;调参包括网格搜索、随机搜索、贝叶斯优化、优化算法如GA优化等。☆20Updated last year
- 决策树、随机森林☆49Updated 6 years ago
- 包含灰色预测模型:灰色单变量预测模型GM(1,1)模型,灰色多变量预测模型GM(1,N)模型,GM(1,N)幂模型,灰色多变量周期幂模型GM(1,N|sin)幂模型,以及灰色关联模型☆77Updated 2 years ago