yangxcc / Sklearn-AlgorithmLinks
Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)
☆83Updated 5 years ago
Alternatives and similar repositories for Sklearn-Algorithm
Users that are interested in Sklearn-Algorithm are comparing it to the libraries listed below
Sorting:
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆55Updated 5 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆63Updated 4 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆45Updated 6 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆76Updated 4 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆169Updated 5 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆155Updated 8 years ago
- 利用回归模型实现房价预测☆45Updated 6 years ago
- 实验源代码-----基于随机森林的气温预测☆42Updated 5 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- 【Numpy 手写实现】SVM 支持向量机 | KNN K近邻 | Kmeans | Logistic Regression 逻辑回归 | Maximum Entropy 最大熵 | Naive Bayes 朴素贝叶斯 | Perception 感知机 | Decision…☆207Updated 5 years ago
- 统计分析课程实验作业/包含《统计分析方法》中因子分析,主成分分析,Kmeans聚类等典型算法的手写实现☆76Updated 5 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 决策树、随机森林☆49Updated 6 years ago
- 本程序实现决策树的建立与可视化,以及决策树的预剪枝与后剪枝,数据集为西瓜书4.2、4.3节中的西瓜数据集☆36Updated 5 years ago
- Python 基于BP神经网络实现鸢尾花的分类☆351Updated 4 years ago
- 基于粒子群算法的神经网络优化股票价格预测☆33Updated 5 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆45Updated 6 years ago
- 利用ID3决策树预测患糖尿病的可能性☆16Updated 4 years ago
- python实现的随机森林☆100Updated 2 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆54Updated 7 years ago
- 决策树分类与回归模型的实现和可视化☆16Updated 3 years ago
- 基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。☆21Updated 5 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆190Updated 5 years ago
- 支持向量机的python实现☆46Updated 9 years ago
- 聚类算法k-means的简单实现☆39Updated 6 years ago
- Python 建立的BP神经网络处理预测相关公交线路数据☆37Updated 7 years ago
- 集成学习Stacking方法详解☆75Updated 5 years ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆145Updated 4 years ago
- 如何使用ARIMA模型预测世界肺炎确诊人数?【时序数据预测】☆41Updated 5 years ago