ChaoZeyi / kaggle_HousePriceLinks
kaggle上的一个房屋价格预测比赛
☆37Updated 7 years ago
Alternatives and similar repositories for kaggle_HousePrice
Users that are interested in kaggle_HousePrice are comparing it to the libraries listed below
Sorting:
- 整理记录本人担任课程助教设计的四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类。内附实验指导书、讲解PPT、参考代码,欢迎各位码友讨论交流。☆115Updated 7 years ago
- Python实现经典分类回归、关联分析、聚类以及推荐算法等☆215Updated 6 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆240Updated 6 years ago
- 一些机器学习算法的demo。普通最小二乘法,决策树(Iris鸢尾花数据集),KNN(mnist手写数字数据集),朴素贝叶斯分类西瓜数据集,trec06c数据集垃圾邮件分类(spam),逻辑斯蒂回归,随机梯度下降SGD与全梯度下降的对比,mnist中8和9的二分类,泰坦尼克号…☆181Updated 6 years ago
- 数据挖掘作业数据以及代码(电动车价格预测)☆68Updated 5 years ago
- 基于pytorch进行文本多分类,主要模型为双向LSTM,预测准确率83%☆44Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆56Updated 5 years ago
- 机器学习实践:贷款违约预测☆37Updated 5 years ago
- 利用ID3决策树预测患糖尿病的可能性☆16Updated 4 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆54Updated 7 years ago
- 这里主要存放做过的深度学习的一些实战项目☆34Updated 5 years ago
- 使用sklearn做特征工程☆172Updated 6 years ago
- 机器学习、深度学习、NLP实战项目☆141Updated 7 years ago
- Python 建立的BP神经网络处理预测相关公交线路数据☆37Updated 7 years ago
- 朴素贝叶斯实现的文本分类(新闻分类)☆65Updated 9 years ago
- 回归问题是数据挖掘和机器学习中常常出现的问题----本专题以 中国移动用户信用分预测 为例,对比分析几类 常见的回归算法,包括:线性回归、岭回归、贝叶斯岭回归、前馈神经网络、迭代提升树等。☆17Updated 6 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆45Updated 6 years ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆145Updated 4 years ago
- 机器学习算法经典案例☆110Updated 4 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- K-Means聚类分析算法Python实现,并以鸢尾花数据集为例进行聚类演示☆18Updated 7 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆37Updated 6 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆155Updated 8 years ago
- 机器学习应用平台/数据预测/文本分类☆12Updated 6 years ago
- 银行客户流失预警模型☆44Updated 7 years ago
- 本程序实现决策树的建立与可视化,以及决策树的预剪枝与后剪枝,数据集为西瓜书4.2、4.3节中的西瓜数据集☆36Updated 5 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆76Updated 4 years ago
- 电影评论情感分类,基于Pytorch☆15Updated 5 years ago