seanzhang-zhichen / -transformer-english2chinese-
pytorch
☆40Updated last year
Alternatives and similar repositories for -transformer-english2chinese-:
Users that are interested in -transformer-english2chinese- are comparing it to the libraries listed below
- transformer,机器翻译,中文--英文☆73Updated 2 years ago
- 使用transformer架构实现简单的英语翻译中文模型☆86Updated 5 years ago
- pytorch实现Transformer,提供机器翻译案例和简单的翻译api接口(flask)。评分组件使用BLEU。☆73Updated 3 years ago
- ☆162Updated last year
- ☆89Updated 2 years ago
- ☆19Updated 4 years ago
- Using Bert/Roberta + LSTM/GRU/BiLSTM/TextCNN to do the sentiment analysis on the imdb datasets.☆126Updated last year
- 英中文本机器翻译的☆92Updated 5 years ago
- A Transformer Framework Based Translation Task☆146Updated last week
- A PyTorch implementation of a BiLSTM \ BERT \ Roberta (+ BiLSTM + CRF) model for Chinese Word Segmentation (中文分词) .☆207Updated 2 years ago
- THUCNews中文文本分类数据集,该数据集包含84万篇新闻文档,总计14类;在该模型的基础上测试多个版本bert分 类效果。☆58Updated 4 years ago
- CWS中文分词 HMM BiLSTM+CRF pytorch 细致实现☆47Updated 3 years ago
- 基于BERT的中文命名实体识别☆37Updated 2 years ago
- NLP常见任务实现(pytorch版)☆122Updated 4 years ago
- Exercises of Natural Language Process.☆32Updated 3 years ago
- This is some summary code and model☆39Updated 3 years ago
- pytorch实现seq2seq机器翻译算法,附详细注释☆24Updated 3 years ago
- 天池比赛【NLP】医学搜索Query相关性判断 第三名方案☆35Updated last year
- 使用pytorch完成的一个多模态分类任务,文本和图像部分分别使用了bert和resnet提取特征(在config里可以组合多种模型),在我的小规模数据集上取得了良好的性能(验证集acc96%)☆72Updated last year
- seq2seq_translation☆26Updated 3 years ago
- 学习深度学习不如边写代码边学习,实际操作一遍才能理解数据的变换过程,参数的训练过程,这里整合了B站的jupter代码,可以结合着B站的视频边看边练,希望能对大家有帮助。☆126Updated 2 years ago
- 基于pytorch_bert的中文多标签分类☆89Updated 3 years ago
- bilibili-nlp☆28Updated 2 years ago
- This is a repository for a few projects built in torch.☆42Updated 3 years ago
- NLP实战项目☆87Updated 2 years ago
- Transformer model for Chinese-English translation.☆49Updated 7 months ago
- 利用传统方法(N-gram,HMM等)、神经网络方法(CNN,LSTM等)和预训练方法(Bert等)的中文分词任务实现【The word segmentation task is realized by using traditional methods (n-gram, …☆32Updated 2 years ago
- 中文命名实体识别☆44Updated 3 years ago
- 基于Hmm模型和Viterbi算法实现中文分词及词性标注,使用最大概率算法进行优化。人民日报语料:分词(F1:96.189%);词性标注(F1:97.934%)☆25Updated last year
- seq_2_seq text generation based on transformers☆24Updated 4 years ago