mtcz91 / pred_used_car_price
天池竞赛数据挖掘之二手车交易价格预测大赛
☆9Updated 4 years ago
Alternatives and similar repositories for pred_used_car_price:
Users that are interested in pred_used_car_price are comparing it to the libraries listed below
- 一个数据分析项目,利用 Pandas 库进行数据预处理,缺少值填充,利用sklearn 模块建模并对多种农产品价格进行预测☆24Updated 3 years ago
- 关联规则和决策树组合算法在学生成绩分析中的研究——本科毕设。首先,本文基于爬取到的学生课程成绩设计以学生成绩为主题的数据仓库,为后续的成绩分析提高可靠的数据支持。其次,利用关联规则算法挖掘分析课程间的关联性,并生 成用于构造决策树的新属性。最后,通过信息增益率的思想将生成的…☆47Updated 3 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆41Updated 5 years ago
- 一个垃圾短信识别系统——国科大网络数据挖掘(徐君)课程设计☆31Updated 6 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆60Updated 4 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- 数据挖掘作业数据以及代码(电动车价格预测)☆66Updated 4 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆43Updated 5 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆34Updated 5 years ago
- 利用python对3000个数据利用机器学习算法建立模型,并预测未来客户信用风险。处理数据不均衡问题时采用了SMOTE过采样以及随机过采样技术;通过相关性分析进行特征选择;建模过程中用到了Logistic回归、SVM、随机森林、GBDT四种模型,并通过网格搜索法确定最优参数…☆29Updated 2 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化 后,AUC值达到0.8259☆54Updated 4 years ago
- 数据预处理之缺失值处理,特征选择☆21Updated 5 years ago
- 情感分析系统,用于分析用户评论是积极还是消极。其中使用了逻辑回归函数、决策树、支持向量机、神经网络等不同的模型进行训练☆30Updated 6 years ago
- 交通时空大数据分析与挖掘☆12Updated 2 years ago
- 分别用K均值K_means和模糊C均值FCM算法对Iris鸢尾花数据集聚类以及图像聚类分割☆23Updated 2 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆72Updated 4 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆44Updated 6 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆148Updated 4 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 5 years ago
- 智能供应链分析,对顾客用rfm模型分类,用多种机器学习模型建模,进行欺诈订单预测,延迟发货预测,销售额预测,销售数量预测☆30Updated 4 years ago
- 金融反欺诈预测系统,技术涉及Vue3、Flask、XGBoost等。本项目提供了完整的Web系统,系统功能包括信贷数据分析、信贷欺诈数据检测、用户历史预测记录、用户数据管理等。项目整体并不复杂,适合新手练手学习机器学习与Web系统的结合。☆41Updated 2 years ago
- 改进的k-prototypes聚类算法☆18Updated 4 years ago
- 利用爬虫获取58同城的二手房信息,选取特征并对数据进行预处理,利用机器学习算法给出不同地段的租房推荐。☆15Updated 5 years ago
- 使用k-means算法实现对用户金融数据的聚类分析☆11Updated 6 years ago
- 利用时间序列预测汽车销量☆37Updated 6 years ago
- 机器学习实践:贷款违约预测☆36Updated 5 years ago
- 通过python爬虫获取人民网、新浪等网站新闻作为训练集,基于BERT构建新闻文本分类模型,并结合node.js + vue完成了一个可视化界面。☆40Updated 2 years ago
- 基于Python实现了K-Means、GMM、DBSCAN、AGNES等四种常见的聚类算法☆68Updated 5 years ago
- kaggle贷款违约预测☆35Updated 6 years ago
- 基于互联网金融平台2015年度贷款数据完成信贷违约预测模型,该模型可以作为信贷平台预测违约借款人的参考☆68Updated 6 years ago