Ultraopxt / Predict-the-rent-probability-of-a-roomLinks
机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259
☆56Updated 5 years ago
Alternatives and similar repositories for Predict-the-rent-probability-of-a-room
Users that are interested in Predict-the-rent-probability-of-a-room are comparing it to the libraries listed below
Sorting:
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆83Updated 5 years ago
- 实验源代码-----基于随机森林的气温预测☆42Updated 5 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆76Updated 4 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆63Updated 4 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆45Updated 6 years ago
- 基于粒子群算法的神经网络优化股票价格预测☆33Updated 5 years ago
- 支持向量机,Support Vector Machine(SVM),多类分类☆31Updated 8 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆169Updated 5 years ago
- 基于机器学习的信用风险评估模型,主要使用了Sklearn库,通过逻辑回归,向量机等模型,根据借款人的个人身份信息评估是否应当发放贷款。☆17Updated 3 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- 决策树、随机森林☆49Updated 6 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 本程序实现决策树的建立与可视化,以及决策树的预剪枝与后剪枝,数据集为西瓜书4.2、4.3节中的西瓜数据集☆36Updated 5 years ago
- Python与机器学习方向,《决策树与集成算法》课程仓库☆25Updated 7 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆145Updated 4 years ago
- 利用ID3决策树预测患糖尿病的可能性☆16Updated 4 years ago
- 利用回归模型实现房价预测☆45Updated 6 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆155Updated 8 years ago
- 利用时间序列预测汽车销量☆41Updated 6 years ago
- 使用bp神经网络预测股票价格。BP neural network is used to predict the stock price.☆37Updated 5 years ago
- 《应用时间序列分析》易丹辉、王燕著; 案例Python实现☆16Updated 5 years ago
- 集成学习Stacking方法详解☆75Updated 5 years ago
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆14Updated 6 years ago
- 2021年研究生数学建模竞赛B题,全国二等奖,空气质量预报二次建模,时间序列数据分析与回归预测。Time Series Prediction&Air Quality Prediction.☆36Updated 3 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆54Updated 7 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆117Updated 4 years ago
- 利用python对3000个数据利用机器学习算法建立模型,并预测未来客户信用风险。处理数据不均衡问题时采用了SMOTE过采样以及随机过采样技术;通过相关性分析进行特征选择;建模过程中用到了Logistic回归、SVM、随机森林、GBDT四种模型,并通过网格搜索法确定最优参数…☆31Updated 3 years ago