lyk19940625 / HousingInformationAnalysis
利用爬虫获取58同城的二手房信息,选取特征并对数据进行预处理,利用机器学习算法给出不同地段的租房推荐。
☆15Updated 5 years ago
Alternatives and similar repositories for HousingInformationAnalysis:
Users that are interested in HousingInformationAnalysis are comparing it to the libraries listed below
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- Python 建立的BP神经网络处理预测相关公交线路数据☆36Updated 7 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆231Updated 6 years ago
- 基于粒子群算法的神经网络优化股票价格预测☆33Updated 4 years ago
- 利用回归模型实现房价预测☆45Updated 6 years ago
- 一个数据分析项目,利用 Pandas 库进行数据预处理,缺少值填充,利用sklearn 模块建模并对多种农产品价格进行预测☆24Updated 3 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆44Updated 6 years ago
- 基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。☆21Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆55Updated 5 years ago
- 逻辑回归预测违约可能☆32Updated 7 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆51Updated 7 years ago
- 决策树、随机森林☆49Updated 6 years ago
- 基于深度学习(LSTM)的情感分析(京东商城数据)☆172Updated 4 years ago
- 数据挖掘作业数据以及代码(电动车价格预测)☆67Updated 4 years ago
- 基于ARIMA时间序列的销量预测模型,实际预测准确率达90%以上,内含有测试记录和实际上线效果。☆105Updated 5 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆42Updated 5 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆37Updated 6 years ago
- 时间序列ARIMA模型的销量预测☆63Updated 6 years ago
- 使用bp神经网络预测股票价格。BP neural network is used to predict the stock price.☆36Updated 4 years ago
- 基于机器学习的信用风险评估模型,主要使用了Sklearn库,通过逻辑回归,向量机等模型,根据借款人的个人身份信息评估是否应当发放贷款。☆17Updated 2 years ago
- 基于Python:网络爬虫获取房价信息、数据的预处理和可视化、搭建基于房价预测的机器学习模型、房价预测。☆134Updated 8 months ago
- 某电商手机评论的文本挖掘初体验 功能板块:数据预处理、LDA模型获取特征词、情感极性判断与程度计算、回归模型预测销量排序☆116Updated 6 years ago
- 用 jupyter notebook做的一些机器学习项目☆81Updated 5 years ago
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆41Updated last year
- 爬虫+数据分析实战项目(基于python)☆13Updated 5 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆62Updated 4 years ago
- 电影评论情感分析,利用LSTM进行分类,数据集为IMDB情感分析数据集,使用已经训练好的词典向量模型☆24Updated 6 years ago
- 机器学习大作业支撑代码:SVM、随机森林、深度学习☆12Updated 4 years ago