lyk19940625 / HousingInformationAnalysisLinks
利用爬虫获取58同城的二手房信息,选取特征并对数据进行预处理,利用机器学习算法给出不同地段的租房推荐。
☆15Updated 6 years ago
Alternatives and similar repositories for HousingInformationAnalysis
Users that are interested in HousingInformationAnalysis are comparing it to the libraries listed below
Sorting:
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆239Updated 6 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆79Updated 5 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- 模型优化调参---网格搜索(五折交叉验证)☆11Updated 6 years ago
- 基于ARIMA时间序列的销量预测模型,实际预测准确率达90%以上,内含有测试记录和实际上线效果。☆103Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆56Updated 5 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆289Updated 5 years ago
- 客流量时间序列预测模型☆126Updated 3 years ago
- 时间序列ARIMA模型的销量预测☆61Updated 7 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆54Updated 7 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- 如何使用ARIMA模型预测世界肺炎确诊人数?【时序数据预测】☆40Updated 5 years ago
- 基于卡口实时过车数据进行交通流量的实时预测分析,使用LSTM循环神经网络模型进行融合预测,准确率达到90%以上。☆57Updated 5 years ago
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆43Updated last year
- Python 建立的BP神经网络处理预测相关公交线路数据☆37Updated 7 years ago
- 利用时间序列预测汽车销量☆41Updated 6 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆64Updated 5 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆47Updated 6 years ago
- 利用回归模型实现房价预测☆45Updated 6 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆83Updated 5 years ago
- 基于深度学习的共享单车预测与调度解决方案,使用神经网络构建单车需求量与时间段和地理画像的关联,预测不同区域单车需求量;使用蚁群算法规划最优单车调度路径。☆102Updated 6 years ago
- 时间序列预测项目,采用不同的深度学习、机器学习算法,进行时间序列预测。包含不同预测算法与预测场景☆32Updated last year
- 机器学习大作业支撑代码:SVM、随机森林、深度学习☆13Updated 4 years ago
- python数据分析与数据挖掘实例☆61Updated last year
- 基于seq2seq模型的风功率预测☆29Updated 5 years ago
- 爬虫爬取北京天气数据,pandas和numpy处理数据,matplot可视化展示数据,sklearn机器学习方法预测空气状况。☆131Updated 5 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆37Updated 6 years ago
- Python 基于BP神经网络实现鸢尾花的分类☆351Updated 5 years ago
- 基于python编写的Keras深度学习框架开发,利用卷积神经网络CNN,快速识别图片并进行分类☆39Updated 7 years ago