darlinglele / clusteringLinks
聚类分析: K均值聚类算法、层次聚类算法
☆25Updated 10 years ago
Alternatives and similar repositories for clustering
Users that are interested in clustering are comparing it to the libraries listed below
Sorting:
- 研究生数学建模比赛-航班登机口分配☆16Updated 6 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆37Updated 6 years ago
- 基于深度学习的共享单车预测与调度解决方案,使用神经网络构建单车需求量与时间段和地理画像的关联,预测不同区域单车需求量;使用蚁群算法规划最优单车调度路径。☆101Updated 6 years ago
- 整理记录本人担任课程助教设计的四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类。内附实验指导书、讲解PPT、参考代码,欢迎各位码友讨论交流。☆115Updated 7 years ago
- 改进的k-prototypes聚类算法☆19Updated 4 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- K-Means聚类分析算法Python实现,并以鸢尾花数据集为例进行聚类演示☆18Updated 7 years ago
- 基于Python实现了K-Means、GMM、DBSCAN、AGNES等四种常见的聚类算法☆69Updated 6 years ago
- 利用回归模型实现房价预测☆45Updated 6 years ago
- 2018年研究生数学建模F组题☆14Updated 2 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马 尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆76Updated 4 years ago
- 智能供应链分析,对顾客用rfm模型分类,用多种机器学习模型建模,进行欺诈订单预测,延迟发货预测,销售额预测,销售数量预测☆33Updated 4 years ago
- 洛杉矶房价预测☆19Updated 4 years ago
- 统计分析课程实验作业/包含《统计分析方法》中因子分析,主成分分析,Kmeans聚类等典型算法的手写实现☆76Updated 5 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- 用python实现SVM/AdaBoost/C4.5/CART/Naïve Bayes等数据挖掘领域十大经典算法☆79Updated 7 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆240Updated 6 years ago
- Python实现经典分类回归、关联分析、聚类以及推荐算法等☆215Updated 6 years ago
- K-Means聚类算法及其改进☆32Updated 7 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 这是中国研究生数学建模大赛的C题,用于解决航班恢复的问题。程序首先建立了飞机,航班,客户,机场四个类用于模拟航班调度环境。之后应用遗传算法寻找最优的航班调度方案☆33Updated 6 years ago
- Python 建立的BP神经网络处理预测相关公交线路数据☆37Updated 7 years ago
- 最优化领域☆19Updated 8 years ago
- 基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。☆21Updated 5 years ago
- 基于粒子群算法的神经网络优化股票价格预测☆33Updated 5 years ago
- 数据挖掘常用算法:关联分析Apriori算法,数据分类决策树算法,数据聚类K-means算法☆25Updated 6 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆56Updated 5 years ago
- 2019年第十六届华为杯数学建模竞赛F题第一名论文附代码☆55Updated 5 years ago
- Python与机器学习方向,《决策树与集成算法》课程仓库☆25Updated 7 years ago