yangyubuaa / Pseudo_Data_Tagging
基于自学习(伪标签)的数据自动标注算法(半监督)
☆16Updated 3 years ago
Alternatives and similar repositories for Pseudo_Data_Tagging:
Users that are interested in Pseudo_Data_Tagging are comparing it to the libraries listed below
- 用Tensorflow实现深度学习模型和迁移学习模型☆13Updated 5 years ago
- 数据预处理之缺失值处理,特征选择☆21Updated 5 years ago
- 类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容☆36Updated 4 years ago
- The python implementation of tri-triaing☆50Updated 5 years ago
- Modification for Broad Learning System, including BLS, CNN-BLS, PCA-BLS. Now BroadLearningSystemTools-2.0 is available.☆27Updated last year
- Cost-Sensitive Learning / ReSampling / Weighting / Thresholding / BorderlineSMOTE / AdaCost / etc.☆106Updated 4 years ago
- 本代码将用极端随机森林(Extremely Random Forests, ERF)来训练图像分类器。一个目标识 别系统就是利用图像分类器将图像分到已知的类别中。 ERF在机器学习领域非常流行,因为ERF 具有较快的速度和比较精确的准确度。我们基于图像的特征构建一组决策树,…☆10Updated 7 years ago
- 基于GAN的小样本学习实验(pytorch)☆14Updated 3 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- A Python library for Three Way Decision and Rough Set Theory☆19Updated 3 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 4 years ago
- PyTorch implementation of DCSS: Deep Clustering with Self-supervision using Pairwise Data Similarities☆27Updated last year
- 利用深度学习自编码器进行故障诊断的程序☆10Updated 6 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- 基于pytorch的不平衡数据的文本分类☆11Updated 3 years ago
- 使用支持向量机,感知机,随机森林,决策树,k近邻,logistic,LSTM,bagging,boosting,集成等多种常见算法实现多分类任务(三分类)。Support vector machine, perceptron, random forest, decision…☆16Updated 4 years ago
- 分别用K均值K_means和模糊C均值FCM算法对Iris鸢尾花数据集聚类以及图像聚类分割☆23Updated 2 years ago
- This is a very simple implementation for the NIPS 2017 paper Prototypical Networks for Few-shot Learning.☆20Updated 3 years ago
- The code of the AAAI-19 paper "AFS: An Attention-based mechanism for Supervised Feature Selection".☆44Updated 6 years ago
- 图像分类网络Pytorch实现☆12Updated 3 years ago
- 使用多种方法解决MNSIT问题☆24Updated 4 years ago
- knowledge distillation for few-shot learning☆15Updated last year
- (1) Purpose: A weakly supervised surface defect detection model using image-level labels for simultaneous classification and segmentation…☆22Updated last year
- 卷积神经网络提取特征并用于SVM//www.cnblogs.com/chuxiuhong/p/6132814.html☆15Updated 6 years ago
- 基于深度学习卷积神经网络的图像分 类的GUI界面☆24Updated 2 years ago
- MNIST classification by using GCN☆47Updated 5 years ago
- 在sts数据集上用多头注意力机制上进行测试。 pytorch torchtext 代码简练,非常适合新手了解多头注意力机制的运作。不想transformer牵扯很多层 multi-head attention + one layer linear☆16Updated 5 months ago
- 这是论文Unsupervised Domain Adaptation by Backpropagation的复现代码,并完成了MNIST与MNIST-M数据集迁移,master和tf2分支代码为是基于tf2.x,tf1分支代码基于tf1.x☆64Updated 3 years ago
- 这个仓库主要包含了LSTM、卷积神经网络中,注意力机制的实现。☆133Updated 4 years ago
- Multi-Label Classification with Weighted Classifier Selection and Stacked Ensemble☆14Updated 4 years ago