zhulei227 / ML_imblearnLinks
类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容
☆38Updated 5 years ago
Alternatives and similar repositories for ML_imblearn
Users that are interested in ML_imblearn are comparing it to the libraries listed below
Sorting:
- 集成学习Stacking方法详解☆79Updated 6 years ago
- 常用的特征选择方法☆67Updated 3 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆119Updated 5 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 数据预处理之缺失值处理,特征选择☆22Updated 6 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 5 years ago
- feature selections and extractions☆88Updated last year
- Oversampling for imbalanced learning based on k-means and SMOTE☆129Updated 4 years ago
- 基于遗传算法的特征选择☆128Updated 6 years ago
- 使用遗传算法结合决策树做特征选择/Using genetic algorithm for feature selection with decision tree☆25Updated 7 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- Cost-Sensitive Learning / ReSampling / Weighting / Thresholding / BorderlineSMOTE / AdaCost / etc.☆110Updated 5 years ago
- Implementations of various feature selection methods☆24Updated 5 years ago
- ☆67Updated 5 years ago
- 异常值检测算法总结☆200Updated 5 years ago
- LR / SVM / XGBoost / RandomForest etc.☆30Updated 5 years ago
- Stacking classification and regression☆25Updated 6 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆79Updated 10 months ago
- A practical feature engineering handbook☆333Updated 5 years ago
- 数据竞赛笔记fork☆82Updated 2 years ago
- Machine learning competition solutions and tricks | 算法竞赛方案☆60Updated 5 months ago
- This is an App developed in Python to implement the algorithm for minimum redundancy maximum ralevance. The formulation was based on a re…☆13Updated 7 years ago
- 🛠️ Class-imbalanced Ensemble Learning Toolbox. | 类别不平衡/长尾机器学习库☆408Updated 8 months ago
- [ICDE'20] ⚖️ A general, efficient ensemble framework for imbalanced classification. | 泛用,高效,鲁棒的类别不平衡学习框架☆262Updated last year
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆47Updated 2 years ago
- 双塔模型,打比赛用。解决多维时间序列的分类预测任务☆35Updated 3 years ago
- 包含一些比较常见的数据挖掘竞赛或者项目的源码☆131Updated 6 years ago
- Oversampling method based on relative density☆13Updated 5 years ago
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆52Updated 6 years ago
- 《Python预测之美:数据分析与算法实战》书籍代码维护☆66Updated 2 years ago