zhulei227 / ML_imblearnLinks
类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容
☆38Updated 5 years ago
Alternatives and similar repositories for ML_imblearn
Users that are interested in ML_imblearn are comparing it to the libraries listed below
Sorting:
- 常用的特征选择方法☆67Updated 3 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆118Updated 5 years ago
- 基于遗传算法的特征选择☆128Updated 6 years ago
- feature selections and extractions☆88Updated last year
- 集成学习Stacking方法详解☆78Updated 6 years ago
- LR / SVM / XGBoost / RandomForest etc.☆30Updated 5 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆79Updated 10 months ago
- 数据预处理之缺失值处理,特征选择☆22Updated 6 years ago
- Implementations of various feature selection methods☆24Updated 5 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 使用遗传算法结合决策树做特征选择/Using genetic algorithm for feature selection with decision tree☆25Updated 7 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆129Updated 4 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- ☆14Updated 5 years ago
- 基于KNN聚类算法结合Dynamic Time Warping(动态时间调整)的时间序列分类☆63Updated 6 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 5 years ago
- Cost-Sensitive Learning / ReSampling / Weighting / Thresholding / BorderlineSMOTE / AdaCost / etc.☆110Updated 5 years ago
- 异常值检测算法总结☆200Updated 5 years ago
- Stacking classification and regression☆25Updated 6 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆287Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆57Updated 5 years ago
- Machine learning competition solutions and tricks | 算法竞赛方案☆60Updated 5 months ago
- A practical feature engineering handbook☆333Updated 5 years ago
- ☆22Updated 5 years ago
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆52Updated 6 years ago
- TensorFlow Probability;Time series model☆127Updated 3 years ago
- ☆67Updated 5 years ago
- Comparing XGBoost, CatBoost and LightGBM on TimeSeries Regression (RMSE, R2, AIC) on two different TimeSeries datasets.☆22Updated 6 years ago
- 主要是在学习李航的统计学习方法和周志华的机器学习西瓜书的笔记和相关的代码实现☆33Updated 6 years ago
- 项目基于论文《Fuzzy c-Means Algorithms for Very Large Data》,使用Python语言实现FCM算法及其扩展算法,包括FCM、spFCM、oFCM、kFCM、reskFCM、spkFCM、okFCM。☆67Updated 6 years ago