zhulei227 / ML_imblearn
类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容
☆36Updated 4 years ago
Alternatives and similar repositories for ML_imblearn:
Users that are interested in ML_imblearn are comparing it to the libraries listed below
- 集成学习Stacking方 法详解☆71Updated 5 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆115Updated 4 years ago
- LR / SVM / XGBoost / RandomForest etc.☆28Updated 4 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 5 years ago
- ☆14Updated 4 years ago
- 数据预处理之缺失值处理,特征选择☆21Updated 5 years ago
- Implementations of various feature selection methods☆24Updated 4 years ago
- 基于遗传算法的特征选择☆127Updated 5 years ago
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆49Updated 5 years ago
- machine_learning_study☆24Updated last year
- This is an App developed in Python to implement the algorithm for minimum redundancy maximum ralevance. The formulation was based on a re…☆13Updated 6 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 4 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆66Updated last week
- feature selections and extractions☆88Updated 8 months ago
- Cost-Sensitive Learning / ReSampling / Weighting / Thresholding / BorderlineSMOTE / AdaCost / etc.☆106Updated 4 years ago
- Stacking classification and regression☆22Updated 5 years ago
- ☆65Updated 4 years ago
- ☆12Updated 4 years ago
- Python与机器学习方向,《决策树与集成算法》课程仓库☆24Updated 6 years ago
- 主要是在学习李航的统计学习方法和周志华的机器学习西瓜书的笔记和相关的代码实现☆31Updated 5 years ago
- Multi-Label Classification with Weighted Classifier Selection and Stacked Ensemble☆14Updated 4 years ago
- 2020 第四届工业大数据创新竞赛-水电站入库流量预测-top1代码☆30Updated 4 years ago
- 分类类别不平衡,解决办法:采样(SMOTE和算法集成技术等)、阈值移动、调整代价或权重,附带信用卡诈骗案例☆21Updated 5 years ago
- 时间序列异常检测☆52Updated 5 years ago
- 基于自构造函数的特征提取评分项目(缺失值处理,单变量相关性分析,特征评分,降维)☆15Updated 7 years ago
- Comparing XGBoost, CatBoost and LightGBM on TimeSeries Regression (RMSE, R2, AIC) on two different TimeSeries datasets.☆22Updated 5 years ago
- 常用机器学习算法的简单手写实现,帮助更好理解算法☆70Updated 2 years ago
- 《应用时间序列分析》易丹辉、王燕著; 案例Python实现☆16Updated 5 years ago