zhulei227 / ML_imblearnLinks
类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容
☆38Updated 5 years ago
Alternatives and similar repositories for ML_imblearn
Users that are interested in ML_imblearn are comparing it to the libraries listed below
Sorting:
- 常用的特征选择方法☆67Updated 3 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆120Updated 5 years ago
- 基于遗传算法的特征选择☆127Updated 6 years ago
- feature selections and extractions☆88Updated last year
- 集成学习Stacking方法详解☆82Updated 6 years ago
- Implementations of various feature selection methods☆24Updated 5 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆130Updated 4 years ago
- 数据预处理之缺失值处理 ,特征选择☆23Updated 6 years ago
- 使用遗传算法结合决策树做特征选择/Using genetic algorithm for feature selection with decision tree☆25Updated 7 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 5 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆79Updated 11 months ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆288Updated 5 years ago
- Cost-Sensitive Learning / ReSampling / Weighting / Thresholding / BorderlineSMOTE / AdaCost / etc.☆110Updated 5 years ago
- ☆67Updated 5 years ago
- LR / SVM / XGBoost / RandomForest etc.☆30Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- Stacking classification and regression☆25Updated 6 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆43Updated 6 years ago
- ☆22Updated 5 years ago
- Machine learning competition solutions and tricks | 算法竞赛方案☆60Updated 6 months ago
- Transfer Learning JDA and TrAdaboost☆65Updated 7 years ago
- Learning and Recording☆34Updated 6 years ago
- 基于KNN聚类算法结合Dynamic Time Warping(动态时间调整)的时间序列分类☆63Updated 6 years ago
- machine_learning_study☆31Updated 2 years ago
- 模糊聚类算法_python版☆30Updated 2 years ago
- [ICDE'20] ⚖️ A general, efficient ensemble framework for imbalanced classification. | 泛用,高效,鲁棒的类别不平衡学习框架☆262Updated 2 years ago
- This is an App developed in Python to implement the algorithm for minimum redundancy maximum ralevance. The formulation was based on a re…☆13Updated 7 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆66Updated 5 years ago
- 双塔模型,打比赛用。解决多维时间序列的分类预测任务☆35Updated 3 years ago