weepon / feature_selectionLinks
常用的特征选择方法
☆67Updated 3 years ago
Alternatives and similar repositories for feature_selection
Users that are interested in feature_selection are comparing it to the libraries listed below
Sorting:
- 数据预处理之缺失值处理,特征选择☆23Updated 6 years ago
- 基于遗传算法的特征选择☆127Updated 6 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 在sklearn下,几种常用的特征选择方法☆41Updated 10 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆120Updated 5 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆79Updated 11 months ago
- Stacking classification and regression☆25Updated 6 years ago
- Transfer Learning JDA and TrAdaboost☆65Updated 7 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆130Updated 4 years ago
- The code of the AAAI-19 paper "AFS: An Attention-based mechanism for Supervised Feature Selection".☆47Updated 6 years ago
- feature selections and extractions☆88Updated last year
- Oversampling method based on relative density☆13Updated 5 years ago
- 使用sklearn做特征工程☆177Updated 7 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆288Updated 5 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆56Updated 8 years ago
- ☆22Updated 5 years ago
- 基于KNN聚类算法结合Dynamic Time Warping(动态时间调整)的时间序列分类☆63Updated 6 years ago
- “合肥高新杯”心电人机智能大赛 —— 心电异常事件预测 TOP1 Solution☆147Updated 4 years ago
- 国内首个迁移学习赛题 中国平安前海征信“好信杯”迁移学习大数据算法大赛 FInSight团队作品(算法方案排名第三)☆87Updated 7 years ago
- 集成学习Stacking方法详解☆82Updated 6 years ago
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆52Updated 6 years ago
- Multilayer recursive feature elimination based on embedded genetic algorithm for cancer classification☆15Updated 7 years ago
- 马上AI全球挑战赛-违约用户风险预测 top2-solution☆18Updated 7 years ago
- ☆102Updated 7 years ago
- 基于Keras的LSTM多变量时间序列预测☆185Updated 8 years ago
- 2019科大讯飞工程机械赛题-亚军☆39Updated 6 years ago
- 分类类别不平衡,解决办法:采样(SMOTE和算法集成技术等)、阈值移动、调整代价或权重,附带信用卡诈骗案例☆21Updated 6 years ago
- 类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容☆38Updated 5 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 5 years ago
- 交易欺诈作为信用卡行业面临的主要贷后风险业务问题,每年都使信用卡行业遭受巨额损失。基于大数据机器学习开发出高效的交易欺诈识别模型一直是金融行业的主要挑战之一。本次大赛以此作为主题☆43Updated 6 years ago