weepon / feature_selection
常用的特征选择方法
☆68Updated 2 years ago
Alternatives and similar repositories for feature_selection:
Users that are interested in feature_selection are comparing it to the libraries listed below
- 数据预处理之缺失值处理,特征选择☆21Updated 5 years ago
- 在sklearn下,几种常用的特征选择方法☆40Updated 9 years ago
- 基于遗传算法的特征选择☆127Updated 5 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆116Updated 4 years ago
- Stacking classification and regression☆22Updated 5 years ago
- 集成学习Stacking方法详解☆72Updated 5 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆69Updated last month
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- 2019年CCF智能信用评分大赛个人源码库。包含XGboost模型调参,特征筛选,训练等方案。同时包含stacking模型融合方案☆27Updated 4 years ago
- 通过科研人员论文项目等数据,训练识别导师/学生的分类器。代码包括特征选择基础、网格搜索确定特征选择方法参数、不平衡数据的处理(oversampling、undersampling)和pu-learning方法在此问题上的应用☆30Updated 5 years ago
- Transfer Learning JDA and TrAdaboost☆64Updated 6 years ago
- 类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容☆36Updated 4 years ago
- Affinity Propagation Clustering with DTW distance on temporal sequence classification☆19Updated 6 years ago
- 使用遗传算法结合决策树做特征选择/Using genetic algorithm for feature selection with decision tree☆24Updated 6 years ago
- feature selections and extractions☆89Updated 9 months ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆41Updated 5 years ago
- Implementations of various feature selection methods☆24Updated 4 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- CCF大数据与计算智能大赛-工件检测TOP1方案☆27Updated 5 years ago
- LR / SVM / XGBoost / RandomForest etc.☆28Updated 4 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆125Updated 3 years ago
- 国内首个迁移学习赛题 中国平安前海征信“好信杯”迁移学习大数据算法大赛 FInSight团队作品(算法方案排名第三)☆86Updated 6 years ago
- 本项目开发了一个机器学习和深度学习的训练工具。该训练工具基于sklearn和pytorch,不仅支持常规训练、交叉验证训练,还支持贝叶斯搜索参数,并可随时自动保存训练模型和日志。☆11Updated last year
- 使用sklearn做特征工程☆170Updated 6 years ago
- Oversampling method based on relative density☆11Updated 4 years ago
- 分类类别不平衡,解决办法:采样(SMOTE和算法集成技术等)、阈值移动、调整代价或权重,附带信用卡诈骗案例☆21Updated 5 years ago
- There are some reproduced algorithms for learning from imbalanced data, including over-sampling,under-sampling and boosting☆12Updated last year
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆50Updated 5 years ago
- 使用 tensorflow2.0 实现图卷积神经网络GCN☆20Updated 4 years ago