weepon / feature_selectionLinks
常用的特征选择方法
☆68Updated 3 years ago
Alternatives and similar repositories for feature_selection
Users that are interested in feature_selection are comparing it to the libraries listed below
Sorting:
- 数据预处理之缺失值处理,特征选择☆21Updated 6 years ago
- 基于遗传算法的特征选择☆128Updated 5 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 在sklearn下,几种常用的特征选择方法☆40Updated 9 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆118Updated 4 years ago
- Stacking classification and regression☆25Updated 5 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆77Updated 6 months ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- The code of the AAAI-19 paper "AFS: An Attention-based mechanism for Supervised Feature Selection".☆46Updated 6 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆128Updated 4 years ago
- 《机器学习之类别不平衡问题》文章代码☆47Updated 6 years ago
- feature selections and extractions☆88Updated last year
- Transfer Learning JDA and TrAdaboost☆65Updated 7 years ago
- 使用sklearn做特征工程☆175Updated 7 years ago
- 国内首个迁移学习赛题 中国平安前海征信“好信杯”迁移学习大数据算法大赛 FInSight团队作品(算法方案排名第三)☆87Updated 6 years ago
- 集成学习Stacking方法详解☆76Updated 5 years ago
- Multilayer recursive feature elimination based on embedded genetic algorithm for cancer classification☆15Updated 6 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆289Updated 5 years ago
- 天池-印象盐城-汽车销量预测大赛☆36Updated 7 years ago
- ☆101Updated 6 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 5 years ago
- There are some reproduced algorithms for learning from imbalanced data, including over-sampling,under-sampling and boosting☆13Updated 2 years ago
- 马上AI全球挑战赛-违约用户风险预测 top2-solution☆19Updated 7 years ago
- 2019年CCF智能信用评分大赛个人源码库。包含XGboost模型调参,特征筛选,训练等方案。同时包含stacking模型融合方案☆27Updated 5 years ago
- Oversampling method based on relative density☆13Updated 4 years ago
- 类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容☆36Updated 4 years ago
- 交易欺诈作为信用卡行业面临的主要贷后风险业务问题,每年都使信用卡行业遭受巨额损失。基于大数据机器学习开发出高效的交易欺诈识别模型一直是金融行业的主要挑战之一。本次大赛以此作为主题☆44Updated 6 years ago
- ☆13Updated 5 years ago
- 分类类别不平衡,解决办法:采样(SMOTE和算法集成技术等)、阈值移动、调整代价或权重,附带信用卡诈骗案例☆21Updated 5 years ago
- 基于KNN聚类算法结合Dynamic Time Warping(动态时间调整)的时间序列分类☆62Updated 6 years ago