weepon / feature_selectionLinks
常用的特征选择方法
☆67Updated 3 years ago
Alternatives and similar repositories for feature_selection
Users that are interested in feature_selection are comparing it to the libraries listed below
Sorting:
- 基于遗传算法的特征选择☆128Updated 6 years ago
- 数据预处理之缺失值处理,特征选择☆22Updated 6 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 在sklearn下,几种常用的特征选择方法☆41Updated 9 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆119Updated 5 years ago
- Stacking classification and regression☆25Updated 6 years ago
- Transfer Learning JDA and TrAdaboost☆65Updated 7 years ago
- feature selections and extractions☆88Updated last year
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆79Updated 10 months ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆56Updated 8 years ago
- The code of the AAAI-19 paper "AFS: An Attention-based mechanism for Supervised Feature Selection".☆47Updated 6 years ago
- 集成学习Stacking方法详解☆79Updated 6 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆129Updated 4 years ago
- Affinity Propagation Clustering with DTW distance on temporal sequence classification☆20Updated 6 years ago
- 基于Keras的LSTM多变量时间序列预测☆185Updated 7 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆287Updated 5 years ago
- 基于KNN聚类算法结合Dynamic Time Warping(动态时间调整)的时间序列分类☆63Updated 6 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- Oversampling method based on relative density☆13Updated 5 years ago
- 国内首个迁移学习赛题 中国平安前海征信“好信杯”迁移学习大数据算法大赛 FInSight团队作品(算法方案排名第三)☆87Updated 7 years ago
- CCF大数据与计算智能大赛-工件检测TOP1方案☆28Updated 6 years ago
- 使用sklearn做特征工程☆176Updated 7 years ago
- 《机器学习之类别不平衡问题》文章代码☆46Updated 7 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 5 years ago
- ☆102Updated 7 years ago
- Solutions of the forecast problem using Xgboost☆91Updated 7 years ago
- Multilayer recursive feature elimination based on embedded genetic algorithm for cancer classification☆15Updated 7 years ago
- The Python implementation of Tradaboost classifier and regressor☆15Updated 7 years ago
- 当样本分布发生变化时,交叉验证无法准确评估模型在测 试集上的效果,这时候需要其他构造验证集的方法来应对。☆52Updated 6 years ago
- There are some reproduced algorithms for learning from imbalanced data, including over-sampling,under-sampling and boosting☆13Updated 2 years ago