fuxuemingzhu / MovieLens-RecommenderView external linksLinks
A pure Python implement of Collaborative Filtering based on MovieLens' dataset.
☆185Jan 30, 2020Updated 6 years ago
Alternatives and similar repositories for MovieLens-Recommender
Users that are interested in MovieLens-Recommender are comparing it to the libraries listed below
Sorting:
- MovieLens based recommender system.使用MovieLens数据集训练的电影推荐系统。☆1,307Mar 31, 2019Updated 6 years ago
- 基于MovieLens-1M数据集实现的协同过滤算法demo☆391Apr 18, 2018Updated 7 years ago
- Movie Rating Prediction using GloVe Word Embeddings and Deep Learning (LSTM): Use MovieLens dataset to predict movie ratings using tags g…☆22Aug 21, 2017Updated 8 years ago
- 本系统是基于物品(item-based)的系统过滤算法。协同过滤推荐技术被认为是推荐系统算法中应用最为成功的技术之一。它通常采用最近邻(K-Nearest-Neighbor, KNN)算法,利用用户的历史记录来计算用户之间的距离,然后利用目标用户的最近邻用户对物品评价来预测…☆14Dec 18, 2019Updated 6 years ago
- Code for "Collaborative Filtering with User-Item Co-Autoregressive Models"☆16Mar 5, 2018Updated 7 years ago
- 《推荐系统开发实战》代码及勘误☆60Mar 20, 2020Updated 5 years ago
- 4 different recommendation engines for the MovieLens dataset.☆449Jul 12, 2019Updated 6 years ago
- [推荐系统] Based on the scoring data set, the recommendation system is built with FM and LR as the core(基于评分数据集,构建以FM和LR为核心的推荐系统).☆299Dec 30, 2021Updated 4 years ago
- 阅读过的推荐系统论文的归类总结,持续更新中…☆382Mar 9, 2019Updated 6 years ago
- 实现了一系列常见的推荐算法,如UserCF,ItemCF,SVD等,包含“切分训练集与测试集-训练模型-推荐-评估”一整套流程。☆20Apr 29, 2020Updated 5 years ago
- 一个简单的电影推荐系统☆231May 4, 2022Updated 3 years ago
- ☆15Mar 16, 2025Updated 10 months ago
- UserCF和ItemCF协同过滤推荐算法的实现☆565Feb 24, 2022Updated 3 years ago
- EGES多卡的简单实现☆13May 5, 2020Updated 5 years ago
- 基于tensorflow的个性化电影推荐系统实战(有前端)☆281Dec 27, 2019Updated 6 years ago
- A collection of resources for Recommender Systems (RecSys)☆535Dec 13, 2021Updated 4 years ago
- collection for the common dataset in my research☆33Feb 23, 2020Updated 5 years ago
- 运用协同过滤算法实现的电影智能推荐APP☆13Jun 3, 2016Updated 9 years ago
- Experiment results using FM, FFM and DeepFM algorithms in Criteo Display Advertising Challenge(https://www.kaggle.com/c/criteo-display-ad…☆13Apr 15, 2020Updated 5 years ago
- The purpose of our research is to study reinforcement learning approaches to building a movie recommender system. We formulate the proble…☆120Dec 22, 2019Updated 6 years ago
- Adversarial Learning, Matrix Factorization, Recommendation☆217Mar 20, 2019Updated 6 years ago
- 探探项目 - 提升推荐系统的推荐多样性☆31Feb 7, 2018Updated 8 years ago
- baseline method HGN, just like SASRec, change its evaluation to be the same as SASRec☆12Aug 19, 2019Updated 6 years ago
- The paper list under Sequential Recommendation task☆14Oct 5, 2020Updated 5 years ago
- RSTutorials: A Curated List of Algorithms about Traditional and Social Recommender System.☆714Apr 5, 2024Updated last year
- Book recommender system using collaborative filtering based on Spark☆393Dec 29, 2017Updated 8 years ago
- Case Recommender: A Flexible and Extensible Python Framework for Recommender Systems☆14Jul 2, 2018Updated 7 years ago
- 本项目使用两种算法来实现一个电影推荐系统,一个是CNN,另一个是矩阵分解的协同过滤。☆136Sep 15, 2018Updated 7 years ago
- 基于用户画像的电影推荐系统(重庆大学软酷实训)☆12Jun 22, 2020Updated 5 years ago
- Experiments codes for SIGIR'16 paper "Fast Matrix Factorization for Online Recommendation with Implicit Feedback "☆138Dec 16, 2017Updated 8 years ago
- TensorFlow implementation of FAIR's InferSent (Supervised Learning of Universal Sentence Representations from Natural Language Inference …☆14Aug 6, 2018Updated 7 years ago
- 推荐系统☆818Apr 18, 2019Updated 6 years ago
- 推荐系统实践书及笔记☆31Oct 16, 2017Updated 8 years ago
- A developing recommender system in tensorflow2. Algorithm: UserCF, ItemCF, LFM, SLIM, GMF, MLP, NeuMF, FM, DeepFM, MKR, RippleNet, KGCN a…☆412Apr 25, 2021Updated 4 years ago
- 利用图神经网络进行CTR预估☆15Nov 22, 2019Updated 6 years ago
- 根据别人和自己在机器学习岗、深度学习岗的面试问题以及答案总结☆36Jun 8, 2019Updated 6 years ago
- Recommend System☆29Apr 11, 2020Updated 5 years ago
- Recommend movies to users by RBMs, TruncatedSVD, Stochastic SVD and Variational Inference☆19Nov 14, 2019Updated 6 years ago
- 基于Apache Spark的Netflix电影的离线与实时推荐系统☆248Mar 21, 2017Updated 8 years ago