bits-bytes-nn / ctr_prediction
Experiment results using FM, FFM and DeepFM algorithms in Criteo Display Advertising Challenge(https://www.kaggle.com/c/criteo-display-ad-challenge) dataset
☆13Updated 4 years ago
Alternatives and similar repositories for ctr_prediction:
Users that are interested in ctr_prediction are comparing it to the libraries listed below
- ☆52Updated 4 years ago
- 2019年知乎看山杯第四名☆35Updated 5 years ago
- 智源 - 看山杯 专家发现算法大赛 2019 7th (https://www.biendata.com/competition/zhihu2019/)☆23Updated 5 years ago
- 利用图神经网络进行CTR预估☆15Updated 5 years ago
- ctr、cvr预估☆49Updated 3 years ago
- graph embedding spark implementation, include deepWalk, Node2Vec etc☆24Updated 4 years ago
- Deep Feedback Network for Recommendation☆94Updated 4 years ago
- KDD Cup 2020 Challenges for Modern E-Commerce Platform: Debiasing Full榜15 Half榜13☆65Updated 4 years ago
- 基于科大讯飞AI营销算法比赛实现CTR深度学习方法☆46Updated 6 years ago
- 推荐系统相关模型 包括召回和排序☆29Updated 4 years ago
- 一些CTR模 型和常见特征工程的方法☆26Updated 3 years ago
- 看山杯 专家发现算法大赛 baseline 0.701741036192302(没有五折验证)☆37Updated 5 years ago
- 京东JDATA2019-用户对品类下店铺的购买预测☆18Updated 5 years ago
- ☆16Updated 4 years ago
- 2019年知乎看山杯专家发现算法大赛第六名完整解决方案☆39Updated 5 years ago
- Bytedance ICME2019☆12Updated 5 years ago
- ☆10Updated 4 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆103Updated 4 years ago
- recommendation system with Youtube Deep Net☆83Updated 6 years ago
- Implement item2vec algorithm☆77Updated 6 years ago
- ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) pr…☆103Updated 2 years ago
- Easy-to-use pytorch-based framework for RecSys models☆40Updated 4 years ago
- a tensorflow implement of MIND (Multi-interest network) recall model☆36Updated 4 years ago
- ☆73Updated 5 years ago
- ☆15Updated 6 years ago
- 基于side information版的 word2vec 《Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba》☆21Updated 4 years ago
- 推荐系统实战☆33Updated 5 years ago
- Code based in TensorFlow☆50Updated 5 years ago
- 华为_DigiX_算法精英大赛——人口年龄属性预测_ Rank14 方案☆31Updated 5 years ago
- ☆171Updated 4 years ago