chengstone / movie_recommenderLinks
MovieLens based recommender system.使用MovieLens数据集训练的电影推荐系统。
☆1,291Updated 6 years ago
Alternatives and similar repositories for movie_recommender
Users that are interested in movie_recommender are comparing it to the libraries listed below
Sorting:
- 推荐系统实例☆794Updated 6 years ago
- UserCF和ItemCF协同过滤推荐算法的实现☆550Updated 3 years ago
- 推荐系统☆804Updated 6 years ago
- 《推荐系统实践》代码实现☆731Updated 6 years ago
- 基于tensorflow的个性化电影推荐系统实战(有前端)☆279Updated 5 years ago
- 基于MovieLens-1M数据集实现的协同过滤算法demo☆386Updated 7 years ago
- 项亮的《推荐系统实践》的代码实现☆492Updated 4 years ago
- Book recommender system using collaborative filtering based on Spark☆385Updated 7 years ago
- [推荐系统] Based on the scoring data set, the recommendation system is built with FM and LR as the core(基于评分数据集,构建以FM和LR为核心的推荐系统).☆303Updated 3 years ago
- 一些传统推荐算法的实现,包括基于内容的推荐,协同过滤,矩阵分解☆297Updated 7 years ago
- 一个简单的电影推荐系统☆233Updated 3 years ago
- 图书推荐系统,基于商品的协同过滤算法实现☆305Updated 5 years ago
- 本项目使用两种算法来实现一个电影推荐系统,一个是CNN,另一个是矩阵分解的协同过滤。☆135Updated 6 years ago
- A pure Python implement of Collaborative Filtering based on MovieLens' dataset.☆186Updated 5 years ago
- 一个电影推荐系统☆829Updated 3 years ago
- 个性化新闻推荐系统,A news recommendation system involving collaborative filtering,content-based recommendation and hot news recommendation, can be…☆794Updated 6 years ago
- 阅读过的推荐系统论文的归类总结,持续更新中…☆380Updated 6 years ago
- 推荐系统综述☆515Updated 2 years ago
- key Deep Learning engineering tricks in recsys☆799Updated 4 years ago
- 豆瓣电影推荐系统(Douban Movie Recommendation System)根据豆瓣电影数据以及豆瓣用户的观影和影评数据,使用基于物品的协同过滤算法对用户进行个性化推荐,并设计GUI进行用户交互。☆218Updated 4 years ago
- 推荐系统实践(基于近邻和LFM的推荐系统)☆103Updated 7 years ago
- CTR prediction using FM FFM and DeepFM☆751Updated 6 years ago
- 卷积神经网络(CNN)提取影评特征构建电影推荐系统,pytorch实现☆129Updated 7 years ago
- 电影推荐系统☆39Updated 6 years ago
- 电影推荐系统、电影推荐引擎、使用Spark完成的电影推荐引擎☆117Updated 7 years ago
- 推荐系统从入门到实战☆167Updated 3 years ago
- 使用Flask,mysql构建的一个基于书籍,基于协同过滤算法,基于slope one的图书推荐系统☆336Updated last year
- 计算广告/推荐系统/机器学习(Machine Learning)/点击率(CTR)/转化率(CVR)预估/点击率预估☆2,031Updated 5 years ago
- 商品推荐系统☆180Updated 4 years ago
- A practical movie recommend project based on Item2vec.☆281Updated 4 years ago