mJackie / RecSys
计算广告/推荐系统/机器学习(Machine Learning)/点击率(CTR)/转化率(CVR)预估/点击率预估
☆1,955Updated 4 years ago
Related projects ⓘ
Alternatives and complementary repositories for RecSys
- 推荐、广告工业界经典以及最前沿的论文、资料集合/ Must-read Papers on Recommendation System and CTR Prediction☆994Updated 10 months ago
- Classic papers and resources on recommendation☆3,321Updated 4 years ago
- Recommender Learning with Tensorflow2.x☆1,865Updated 2 years ago
- 深度学习相关的模型训练、评估和预测相关代码☆1,014Updated 3 years ago
- 《推荐系统实践》代码实现☆689Updated 5 years ago
- 项亮的《推荐系统实践》的代码实现☆479Updated 4 years ago
- CTR prediction model based on spark(LR, GBDT, DNN)☆907Updated 4 years ago
- 【浅梦学习笔记】文章汇总:包含 排序&CXR预估,召回匹配,用户画像&特征工程,推荐搜索综合 计算广告,大数据,图算法,NLP&CV,求职面试 等内容☆1,600Updated last year
- CTR prediction models based on deep learning(基于深度学习的广告推荐CTR预估模型)☆920Updated 5 years ago
- A Deep Learning Recommender System☆2,436Updated 5 months ago
- ☆1,623Updated 4 years ago
- 推荐系统综述☆465Updated last year
- 深度学习在推荐系统中的应用及论文小结。☆796Updated 4 years ago
- 阅读过的推荐系统论文的归类总结,持续更新中…☆360Updated 5 years ago
- 推荐系统实例☆774Updated 6 years ago
- CTR prediction using FM FFM and DeepFM☆747Updated 6 years ago
- Tensorflow implementation of DeepFM for CTR prediction.☆2,040Updated 6 years ago
- 原理解析及代码实战,推荐算法也可以很简单 🔥 想要系统的学习推荐算法的小伙伴,欢迎 Star 或者 Fork 到自己仓库进行学习🚀 有任何疑问欢迎提 Issues,也可加文末的联系方式向我询问!☆652Updated 2 years ago
- 推荐系统☆765Updated 5 years ago
- 该仓库尝试整理推荐系统领域的一些经典算法模型☆1,755Updated last year
- Multi-thread implementation of Factorization Machines with FTRL for binary-class classification problem.☆885Updated 3 years ago
- Papers on Computational Advertising☆4,228Updated 3 years ago
- A deep matching model library for recommendations & advertising. It's easy to train models and to export representation vectors which can…☆2,233Updated 6 months ago
- ☆1,132Updated 5 years ago
- 基础的深度学习实验研究结果汇总笔记☆502Updated last year
- The framework to deal with ctr problem。The project contains FNN,PNN,DEEPFM, NFM etc☆757Updated 6 years ago
- CTR模型代码和学习笔记总结☆377Updated 3 years ago
- The code for 2019 Tencent College Algorithm Contest, and the online result ranks 1st in the preliminary.☆702Updated 3 years ago
- 推荐/广告/搜索领域工业界经典以及最前沿论文集合。A collection of industry classics and cutting-edge papers in the field of recommendation/advertising/search.☆1,356Updated this week
- 公众号: 机器学习荐货情报局 所有代码☆547Updated 5 years ago