ilannd / Neural-Network-experimentLinks
神经网络课程的实验,包括用感知器实现莺尾花分类,BP神经网络实现水果分类,RBF网络实现拟合函数,Hopfiled网络实现数字识别。里面包含一个简单的GUI,初学wxpython,只是实现一个事件绑定这样的功能,很简单。
☆7Updated 4 years ago
Alternatives and similar repositories for Neural-Network-experiment
Users that are interested in Neural-Network-experiment are comparing it to the libraries listed below
Sorting:
- 该课题为基于MATLAB bp神经网络的雾霾天气下交通标志的识别系统。主要分两步骤,一是进行图像去雾,采用暗通道的方法获取光透射率,从而去除雾霾。得到清晰的图片后,利用颜色的方法进行交通标志的定位,众所周知,交通标志基本是红,蓝,黄三色组成,根据RGB不同组合可以定位到不同…☆12Updated 4 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积 神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆155Updated 8 years ago
- 《MATLAB 神经网络43个案例分析》随书代码☆29Updated 4 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆83Updated 5 years ago
- ☆10Updated 7 years ago
- Python 基于BP神经网络实现鸢尾花的分类☆350Updated 4 years ago
- Python code of RBF neural network classification model☆46Updated 6 years ago
- 利用回归模型实现房价预测☆45Updated 6 years ago
- 集成学习Stacking方法详解☆75Updated 5 years ago
- python实现的随机森林☆101Updated 3 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆77Updated 5 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- 这是一个入门机器学习/深度学习的小项目,包含随机森林,多层感知器,卷积神经网络,实现了训练可视化,多分类混淆矩阵等计算☆56Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆146Updated 4 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆63Updated 4 years ago
- 【Numpy 手写实现】SVM 支持向量机 | KNN K近邻 | Kmeans | Logistic Regression 逻辑回归 | Maximum Entropy 最大熵 | Naive Bayes 朴素贝叶斯 | Perception 感知机 | Decision…☆209Updated 5 years ago
- 1、BP-momentum神经网络numpy实现及Pytorch实现及各optim在AQI数据集的表现。2、BP网络分类☆38Updated 5 years ago
- 深度学习代码☆132Updated 5 years ago
- 粒子群算法优化支持向量机☆138Updated 3 years ago
- 慕课网上深度学习之神经网络(CNN RNN GAN)算法原理+实战练习的代码和部分数据☆40Updated 5 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆56Updated 5 years ago
- feature selection by using random forest.☆12Updated 8 years ago
- 使用BP神经网络、RBF神经网络以及PSO优化的RBF神经网络进行数据的预测☆214Updated 5 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆45Updated 6 years ago
- 支持向量机,Support Vector Machine(SVM),多类分类☆31Updated 8 years ago
- A small project abot GA and ANN,基于TensorFlow实现基于遗传算法的神经网络结构搜索技术,在威斯康星乳腺癌细胞分类的数据集上面进行实验,并与传统的机器学习的分类算法进行对比,验证该算法的结果的优劣性。☆37Updated 5 years ago
- use PSO to train the sigle layer NN structure☆23Updated 2 years ago
- matlab神经网络43个案例分析☆71Updated 7 years ago