Wddzht / DataPreprocessing
数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)
☆61Updated 4 years ago
Alternatives and similar repositories for DataPreprocessing:
Users that are interested in DataPreprocessing are comparing it to the libraries listed below
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆41Updated 5 years ago
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆42Updated last year
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆182Updated 4 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆72Updated 4 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆54Updated 4 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆82Updated 4 years ago
- 利用Python实现三层BP神经网络☆80Updated 6 years ago
- python 用GA算法优化BP神经网络☆153Updated 3 years ago
- 基于pytorch搭建多特征LSTM时间序列预测☆163Updated 2 years ago
- 包含灰色预测模型:灰色单变量预测模型GM(1,1)模型,灰色多变量预测模型GM(1,N)模型,GM(1,N)幂模型,灰色多变量周期幂模型GM(1,N|sin)幂模型,以及灰色关联模型☆75Updated 2 years ago
- 基于遗传算法的BP神经网络☆15Updated 4 years ago
- 使用bp神经网络预测股票价格。BP neural network is used to predict the stock price.☆35Updated 4 years ago
- 基于深度学习的溶解氧时间序列预测模型☆28Updated 4 years ago
- 建立SARIMA-LSTM混合模型预测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆74Updated 6 years ago
- 集成学习Stacking方法详解☆72Updated 5 years ago
- 利用时间序列预测汽车销量☆38Updated 6 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- 客流量时间序列预测模型☆117Updated 3 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- PyTorch实现的Informer (Informer:用于长序列时间序列预测☆21Updated 2 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆116Updated 4 years ago
- 麻雀算法优化支持向量机 python实现☆13Updated 2 years ago
- 时间序列ARIMA模型的销量预测☆62Updated 6 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆151Updated 4 years ago
- 使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM…☆44Updated 4 years ago
- 基于粒子群算法优化的BPNN和ElM对海浪高度的预测☆40Updated 2 years ago
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆14Updated 6 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 模型优化调参---网格搜索(五折交叉验证)☆11Updated 5 years ago
- 利用python对3000个数据利用机器学习算法建立模型,并预测未来客户信用风险。处理数据不均衡问题时采用了SMOTE过采样以及随机过采样技术;通过相关性分析进行特征选择;建模过程中用到了Logistic回归、SVM、随机森林、GBDT四种模型,并通过网格搜索法确定最优参数…☆29Updated 2 years ago