KHWeb19 / LectureContents
수업 자료는 모두 여기에 업로드 됩니다.
☆27Updated 2 years ago
Alternatives and similar repositories for LectureContents:
Users that are interested in LectureContents are comparing it to the libraries listed below
- 과제는 여기에 제출합니다.☆26Updated 2 years ago
- 개인 프로젝트 저장소입니다.☆7Updated 2 years ago
- It's for SDC-AI Lecture Notes☆16Updated 8 months ago
- 수업 자료는 여기에 올립니다.☆22Updated 2 years ago
- DPU on PYNQ☆219Updated last year
- ☆118Updated 3 years ago
- Vitis_Accel_Examples☆537Updated 3 weeks ago
- ☆676Updated 5 months ago
- A PYNQ overlay demonstrating Pythonic DSP running on Zynq UltraScale+☆39Updated 2 years ago
- Board files to build Ultra 96 PYNQ image☆154Updated 4 months ago
- Avnet Board Definition Files☆133Updated 2 weeks ago
- Vitis HLS Library for FINN☆192Updated last week
- Implementation of CNN using Verilog☆212Updated 7 years ago
- ☆125Updated 5 months ago
- ☆438Updated 10 months ago
- ☆426Updated 7 months ago
- Scalable systolic array-based matrix-matrix multiplication implemented in Vivado HLS for Xilinx FPGAs.☆339Updated 3 months ago
- This repository contains a "Hello World" introduction application to the Xilinx PYNQ framework.☆102Updated 2 years ago
- ☆89Updated last year
- You can run it on pynq z1. The repository contains the relevant Verilog code, Vivado configuration and C code for sdk testing. The size o…☆171Updated last year
- ☆286Updated this week
- Project is about designing a Trained Neural Network on FPGA to classify an Image Input using CNN.☆146Updated 4 years ago
- Convolutional Neural Network Using High Level Synthesis☆87Updated 4 years ago
- FPGA Accelerator for CNN using Vivado HLS☆317Updated 3 years ago
- SDAccel Development Environment Tutorials☆108Updated 5 years ago
- Floating-point matrix multiplication implementation (arbitrary precision)☆14Updated 3 years ago
- Run Time for AIE and FPGA based platforms☆591Updated this week
- Dataflow QNN inference accelerator examples on FPGAs☆213Updated last month
- 基于FPGA的cifar-10二维卷积识别任务☆10Updated 2 years ago
- PYNQ-Torch: a framework to develop PyTorch accelerators on the PYNQ platform