JiangYanting / Taidi_2020_Data_Ming_C
2020年第八届泰迪杯数据挖掘C题“智慧政务文本挖掘”特等奖作品(论文与代码)
☆60Updated 4 years ago
Related projects ⓘ
Alternatives and complementary repositories for Taidi_2020_Data_Ming_C
- 近年来,随着微信、微博、市长信箱、阳光热线等网络问政平台逐步成为政府了解民意、汇聚民智、凝聚民气的重要渠道,各类社情民意相关的文本数据量不断攀升,给以往主要依靠人工来进行留言划分和热点整理的相关部门的工作带来了极大挑战。同时,随着大数据技术的发展,建立基于自然语言处理技术的…☆30Updated 4 years ago
- 文本热点挖掘,基于DBSCAN聚类模型,对文本的热点事件进行挖掘☆39Updated 4 years ago
- LSTM,TextCNN,fastText情感分析,模型用 tf_serving 和 flask 部署成web应用☆41Updated 5 years ago
- 文本聚类 k-means算法及实战☆55Updated 5 years ago
- 利用文本挖掘技术进行新闻热点关注问题分析☆156Updated 5 years ago
- 练手项目:Comment of Interest 电商文本评论数据挖掘 (爬虫 + 观点抽取 + 句子级和观点级情感分析)☆98Updated 4 years ago
- 本项目的数据来自“互联网新闻情感分析”赛题。基于Transformer2.0库中的中文Bert模型,对新闻语料进行三分类。☆102Updated 5 years ago
- 该库是一个项目集,包括文本分类、多标签分类、细粒度情感分析、命名实体识别,以及部分数据集等☆195Updated 5 years ago
- 京东评论情感分析模型,主要包括1、数据获取及探索性分析;2、文本预处理、文本分词、文本向量化、特征提取、☆76Updated 5 years ago
- 携程/榛果民宿实时评论挖掘软件,包含数据的实时采集/数据清洗/结构化保存/ UGC 数据主题提取/情感分析/后结构化可视化等技术的综合性演示 Demo。基于在线民宿 UGC 数据的意见挖掘项目,包含数据挖掘和 NLP 相关的处理,负责数据采集、主题抽取、情感 分析等任务。主要…☆70Updated 3 years ago
- 今日头条中文新闻(文本)分类数据集☆61Updated 6 years ago
- 以京东评论作为数据集,使用常见的机器学习算法如KNN、SVM、逻辑回归、贝叶斯、xgboost等等算法进行分类。使用深度学习中的CNN、RNN、CNN和RNN连接、Bi-GRU、bert模型进行分类。使用fastnlp的框架搭建文本分类。☆30Updated 4 years ago
- 通过python爬虫获取人民 网、新浪等网站新闻作为训练集,基于BERT构建新闻文本分类模型,并结合node.js + vue完成了一个可视化界面。☆36Updated 2 years ago
- 第十届大学生服务外包大赛--A01商品短文本分类。基于CNN、Bi-LSTM、Attention、Adversarial等方法实现商品短文本分类任务,并基于Flask开发Web版本的交互演示界面。☆27Updated 2 years ago
- 对舆情事件进行词云展示,对评论进行情感分析和观点抽取。情感分析基于lstm 的三分类,观点抽取基于AP 算法的聚类和MMR的抽取☆178Updated 6 years ago
- 基于LSTM网络与自注意力机制对中文评论进行细粒度情感 分析☆54Updated 3 years ago
- 本项目主要是利用LSTM来对中文文本进行情感分类,包含四个类别(愤怒,焦虑,抑郁,伤感)☆52Updated 4 years ago
- 自己之前收集的自然语言处理和知识图谱相关的一些开源项目☆44Updated 4 years ago
- 知识图谱初探,关系抽取,实体抽取,基于kb的问答,基于es的问答,知识图谱可视化☆61Updated 5 years ago
- 该项目通过新闻数据集演示文本分类全流程:数据清洗,模型训练,模型部署和前端展示。使用的模型和工具:pytorch,bert,streamlit☆18Updated 2 years ago
- THUCNews中文文本分类数据集,该数据集包含84万篇新闻文档,总计14类;在该模型的基础上测试多个版本bert分类效果。☆52Updated 3 years ago
- Python实现中文文本关键词抽取,分别用了TF-IDF、LDA、RNN、LSTM和LR-SGD两类共五种方法,全网最全没有之一。☆55Updated 3 years ago
- 该工程是利用python3.6进行“特征提取+分类器”来实现美团评论的文本二分类问题。在特征提取部分提取了6种特征,分类器选择了python里面的包xgboost和lightGBM分别实现提升树和GBDT(梯度提升决策树)。☆89Updated 5 years ago
- 中文文本聚类☆123Updated 2 years ago
- 天池-Datawhale 零基础入门NLP-新闻文本分类 最终榜Top10分享☆51Updated 4 years ago
- Python中文文本挖掘:使用机器学习方法进行情感分析。☆104Updated 6 years ago
- 爬取金融数据,利用neo4j构建金融知识图谱,进而搭建金融问答系统。☆58Updated 2 years ago
- 基于PaddleNLP搭建评论观点抽取和属性级情感分析模型,并基于前后端分离式架构完成属性级情感分析Web系统搭建,通过细粒度情感分析帮助用户和商家更好决策。☆62Updated last year
- 以nlp中情感分析为例,从没有打过标签的语料开始一步步教你怎么去打标签,然后分别以传统的机器学习模型SVM和深度学习模型LSTM去建模。☆33Updated 5 years ago
- 零基础入门NLP - 新闻文本分类 正式赛第一名方案☆221Updated 4 years ago