HorizonRDK / hobot_dnn
☆16Updated 10 months ago
Alternatives and similar repositories for hobot_dnn
Users that are interested in hobot_dnn are comparing it to the libraries listed below
Sorting:
- 主要实现了基于Sort的MOT的Tracking模块☆20Updated 2 years ago
- YOLOv8-ROS-TensorRT-CPP detect, segment & pose including ros1 & ros2.☆73Updated last year
- NVIDIA TensorRT deployment of Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data.☆23Updated last year
- Inference with YOLOv5, OpenCV 4.5.4 DNN, C++, ROS and Python☆13Updated 2 years ago
- ☆12Updated last year
- Joint Keypoint and Object Detection☆65Updated 6 months ago
- ☆111Updated last week
- ☆22Updated 3 years ago
- 本仓库在OpenVINO推理框架下部署Nanodet检测算法,并重写预处理和后处理部分,具有超高性能!让你在Intel CPU平台上的检测速度起飞! 并基于NNCF和PPQ工具将模型量化(PTQ)至int8精度,推理速度更快!☆15Updated last year
- PointPillars TensorRT version pretrained on MMDetection3d with WaymoOpenDataset☆18Updated 2 years ago
- 云深处“绝影lite2”机器狗演示样例代码☆33Updated last year
- 地平线horizon开发板部署工具☆14Updated last year
- 本仓库包含了完整的深度学习应用开发流程,以经典的手写字符识别为例,基于LeNet网络构建。推理部分使用torch、onnxruntime以及openvino框架💖☆17Updated last year
- 本仓库基于 Intel OpenVINO Toolkit 部署 LightTrack 跟踪算法,包含 Python、C++ 两种语言的推理代码.☆20Updated last year
- ☆28Updated 3 years ago
- 基于 YOLOv5 的 ROS 2 封装,允许用户使用给定的模型文件和图像话题进行实时物体检测。☆19Updated last year
- [CVPR2024] BEVSee☆68Updated 10 months ago
- TensorRT depth-anything for anyone and anywhere☆14Updated last year
- 1.相机模型标定(鱼眼相机,普通相机);2.立体相机标定与极线矫正;3.RGB(/灰度)相机与深度相机(tof)标定,数据融合;4.外参标定☆42Updated last year
- A Light-Weight Framework for Open-Set Object Detection with Decoupled Feature Alignment in Joint Space☆84Updated 4 months ago
- 基于 TensorRT 的 C++ 高性能单目标跟踪推理,支持算法OSTrack、LightTrack。☆48Updated last year
- Hackable CLI (and library) for controlling Livox LiDAR sensors, in pure Python.☆17Updated last year
- 基于匈牙利匹配和卡尔曼滤波的SORT多目标跟踪算法。☆16Updated 2 years ago
- FastBEV-ROS-TensorRT-CPP real time inference including ros1 & ros2☆31Updated last year
- The auxiliary tools help help developers deploy their models☆16Updated last week
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆22Updated 3 months ago
- YOLOv5模型剪枝☆17Updated 4 years ago
- ☆13Updated 2 years ago
- ☆33Updated last year
- YOLOv12 Inference Using CPP, Tensorrt, And CUDA☆37Updated last month