pursueDSxie / randomforest
随机森林,该模型用于预测气候温度
☆13Updated last year
Related projects ⓘ
Alternatives and complementary repositories for randomforest
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆132Updated 4 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆175Updated 4 years ago
- 实验源代码-----基于随机森林的气温预测☆35Updated 4 years ago
- 本项目为时间序列预测项目,主要重点在于对预测项目整体流程的梳理总结,不同框架下如何进行简单数据处理和模型搭建。因此项目中搭建的主要为一些常用模型(后续会不断修改完善)。模型包含了prophet模型、keras库的bp神经网络和lstm网络模型、pytorch …☆18Updated last year
- 基于机器学习的信用风险评估模型,主要使用了Sklearn库,通过逻辑回归,向量机等模型,根据借款人的个人身份信息评估是否应当发放贷款。☆10Updated 2 years ago
- Use BPNN and LSTM to forecast stock price. 使用BP神经网络和LSTM预测股票价格,注释拉满。☆174Updated 2 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆79Updated 4 years ago
- 包含灰色预测模型:灰色单变量预测模型GM(1,1)模型,灰色多变量预测模型GM(1,N)模型,GM(1,N)幂模型,灰色多变量周期幂模型GM(1,N|sin)幂模型,以及灰色关联模型☆71Updated 2 years ago
- 使用svr, mlp, rnn, lstm, am-lstm进行多元时间序列回归预测☆50Updated last year
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆35Updated 4 years ago
- 学习吴恩达视频,完成一个小project。使用梯度下降、正则化、神经网络进行房价的预测。使用python中的numpy、scipy、pandas以及matplotlib完成编程的实现。☆23Updated 4 years ago
- 使用随机森林、bp神经网络、LSTM神经网络、GRU对股票收盘价进行回归预测。Random forest, BP neural network, LSTM neural network and GRU are used to predict the closing pric…☆51Updated 4 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆62Updated 4 years ago
- 使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM…☆41Updated 4 years ago
- 用LSTM预测空气质量☆26Updated 4 years ago
- 使用bp神经网络预测股票价格。BP neural network is used to predict the stock price.☆33Updated 4 years ago
- 使用多种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)进行电力系统负荷预测/电力预测。通过一个简单的例子。A variety of algorithms (linear regression, random forest, support vecto…☆148Updated 4 years ago
- 客流量时间序列预测模型☆109Updated 2 years ago
- 基于粒子群算法的神经网络优化股票价格预测☆31Updated 4 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆53Updated 7 years ago
- 建立SARIMA-LSTM混合模型预测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆64Updated 5 years ago
- 水质预测系统,利用机器学习进行水质预测☆69Updated 2 years ago
- 基于遗传算法的BP神经网络☆15Updated 3 years ago
- 利用时间序列预测汽车销量☆37Updated 5 years ago
- 时间序列ARIMA模型的销量预测☆60Updated 6 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆49Updated 4 years ago
- 多元多步时间序列的LSTM模型预测——基于Keras☆75Updated 2 years ago
- 基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。☆21Updated 4 years ago
- 利用Python实现三层BP神经网络☆79Updated 6 years ago
- 交通枢纽客流量预测算法模型☆13Updated 4 years ago