Effort-Hepan / Deep-learning-experiment
基于LSTM+CNN的自然语言处理,基于单维LSTM、多维LSTM时序预测算法和多元线性回归算法的预测模型
☆11Updated 4 years ago
Alternatives and similar repositories for Deep-learning-experiment:
Users that are interested in Deep-learning-experiment are comparing it to the libraries listed below
- CNN-BiGRU-Attention模型☆87Updated 2 years ago
- 使用卷积神经网络-长短期记忆网络(bi-LSTM)-注意力机制对股票收盘价进行回归预测。The convolution neural network, short-term memory network and attention mechanism are used to…☆252Updated last year
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆183Updated 4 years ago
- CNN+BiLSTM+Attention Multivariate Time Series Prediction implemented by Keras☆633Updated 4 years ago
- 用TensorFlow搭建CNN/RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU/Capsule Network等deep learning模型☆58Updated 6 years ago
- CNN+LSTM+Attention predict stock☆45Updated 2 years ago
- 使用改良的Transformer模型应用于多维时间序列的分类任务上☆82Updated 3 years ago
- 通过修改transformer使其可以预测金融时间序列☆32Updated 3 years ago
- 多元多步时间序列的LSTM模型预测——基于Keras☆79Updated 3 years ago
- 基于Keras的LSTM多变量时间序列预测☆23Updated 7 years ago
- 基于pytorch搭建多特征LSTM时间序列预测☆162Updated 2 years ago
- 建立SARIMA-LSTM混合模型预测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆72Updated 6 years ago
- PyTorch实现的Informer (Informer:用于长序列时间序列预测☆19Updated 2 years ago
- 使用bp神经网络预测股票价格。BP neural network is used to predict the stock price.☆35Updated 4 years ago
- Use BPNN and LSTM to forecast stock price. 使用BP神经网络和LSTM预测股票价格,注释拉满。☆185Updated 2 years ago
- 使用ARIMA,Transformer,LSTM 对心跳时间序列数据进行预测☆16Updated last year
- EEMD、LSTM、time series prediction、DO、Deep Learning☆84Updated 3 years ago
- 使用LSTM、GRU、BPNN进行时间序列预测。Using LSTM\GRU\BPNN for time series forecasting. (Pytorch Edition)☆53Updated 4 years ago
- 深度学习以进行时间序列预测☆615Updated 4 years ago
- my blog https://blog.csdn.net/qq_35649669/article/details/105586099☆47Updated 4 years ago
- 基于LSTM的多变量时间序列预测☆18Updated 10 months ago
- 这个仓库主要包含了LSTM、卷积神经网络中,注意力机制的实现。☆131Updated 4 years ago
- ☆18Updated 3 years ago
- 客流量时间序列预测模型☆117Updated 2 years ago
- ☆24Updated 2 years ago
- 使用深度学习模型LSTM和ConvLSTM结合Attention,对金融衍生品的成交持仓比指标进行预测☆17Updated 3 years ago
- Undergradute final project with ARIMA,LSTM,GRU,Xgboost and DeepTTE.毕业论文代码库合集,包括基于ARIMA,LSTM,GRU进行时间序列预测,基于DeepTTE解决ETA(estimated time of …☆20Updated 2 years ago
- 利用时间序列预测汽车销量☆37Updated 6 years ago
- 使用LSTM对股票价格进行回归预测,对股价涨跌进行分类预测。We use LSTM to forecast the stock price and classify the rise and fall of the stock price.☆18Updated 4 years ago
- 基于ARIMA时间序列的销量预测模型,实际预测准确率达90%以上,内含有测试记录和实际上线效果。☆99Updated 5 years ago