Effort-Hepan / Deep-learning-experimentLinks
基于LSTM+CNN的自然语言处理,基于单维LSTM、多维LSTM时序预测算法和多元线性回归算法的预测模型
☆11Updated 2 months ago
Alternatives and similar repositories for Deep-learning-experiment
Users that are interested in Deep-learning-experiment are comparing it to the libraries listed below
Sorting:
- CNN-BiGRU-Attention模型☆93Updated 3 years ago
- 使用卷积神经网络-长短期记忆网络(bi-LSTM)-注意力机制对股票收盘价进行回归预测。The convolution neural network, short-term memory network and attention mechanism are used to…☆287Updated last year
- 基于pytorch框架,针对文本分类的机器学习项目,集成多种算法(xgboost, lstm, bert, mezha等等),提供基础数据集,开箱即用,方便自己二次拓展,持续更新☆31Updated 2 years ago
- 深度学习以进行时间序列预测☆673Updated 4 years ago
- CNN+LSTM+Attention predict stock☆55Updated 3 years ago
- CNN+BiLSTM+Attention Multivariate Time Series Prediction implemented by Keras☆695Updated 5 years ago
- 用TensorFlow搭建CNN/RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU/Capsule Network等deep learning模型☆59Updated 6 years ago
- 利用CNN,LSTM,CNN_LSTM,TextCNN,Bi-LSTM和传统的机器学习算法进行情感分析,参考:https://github.com/Edward1Chou/SentimentAnalysis☆92Updated 6 years ago
- 使用改良的Transformer模型应用于多维时间序列的分类任务上☆89Updated 4 years ago
- 基于pytorch搭建多特征LSTM时间序列预测☆169Updated 2 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆191Updated 5 years ago
- 文本分类, 双向lstm + attention 算法☆90Updated 5 years ago
- A PyTorch Tutorials of Sentiment Analysis Classification (RNN, LSTM, Bi-LSTM, LSTM+Attention, CNN)☆319Updated 2 years ago
- BiLSTM-CNN for Chinese text classification.☆20Updated 4 years ago
- 通过修改transformer使其可以预测金融时间序列☆35Updated 4 years ago
- BiLSTM with Multi-Headed Self Attention for sentiment classification of Twitter data, implemented in Keras and PyTorch.☆27Updated 4 years ago
- ☆16Updated 2 years ago
- stock trend prediction using multi-source data☆12Updated 4 years ago
- attention-based LSTM/Dense implemented by Keras☆299Updated 7 years ago
- 集成各种神经网络进行情感分类,包括CNN、LSTM、Transformer以及BERT等网络模型☆72Updated 6 years ago
- 使用ARIMA,Transformer,LSTM 对心跳时间序列数据进行预测☆18Updated last year
- mlp/rnn/gru + attention 实现文本情感分析☆22Updated 6 years ago
- 基于LSTM的多变量时间序列预测☆21Updated last year
- Lstm+Cnn 预训练词向量 文本分类☆103Updated 6 years ago
- 基于word2vec预训练词向量; textCNN 模型 ;charCNN 模型 ;Bi-LSTM模型;Bi-LSTM + Attention 模型 ;Transformer 模型 ;ELMo 预训练模型 ;BERT 预训练模型的文本分类项目☆122Updated 4 years ago
- 此项目包括数据的预处理、使用GM(1,1)和BP神经网络模型进行数据分析和预测,以及结果的可视化展示。项目旨在展示如何结合传统的机器学习方法和深度学习技术来进行时间序列预测。☆10Updated last year
- 基于Keras的LSTM多变量时间序列预测☆25Updated 7 years ago
- 不同时间序列预测方法对上海旅游规模进行预测☆17Updated 6 years ago
- ☆18Updated 4 years ago
- 用MLP、TextCNN、RNN、LSTM、GRU、Attention、RCNN、BERT做文本分类、情感分析,对比各模型于温泉旅游评论垂类语料下在情感分类任务上的表现☆96Updated 4 years ago