Razzaghnoori / mt_biGRU_attention_keras
☆16Updated 2 years ago
Alternatives and similar repositories for mt_biGRU_attention_keras:
Users that are interested in mt_biGRU_attention_keras are comparing it to the libraries listed below
- 用TensorFlow搭建CNN/RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU/Capsule Network等deep learning模型☆59Updated 6 years ago
- Hierarchical BiLSTM CNN using Keras☆76Updated 6 years ago
- 集成各种神经网络进行情感分类,包括CNN、LSTM、Transformer以及BERT等网络模型☆72Updated 6 years ago
- Industry chain data test:Sentence classify Bi-GRU-att☆21Updated 6 years ago
- attention-based LSTM/Dense implemented by Keras☆298Updated 6 years ago
- 文本分类, 双向lstm + attention 算法☆90Updated 4 years ago
- keras 搭建文本分类模型,textcnn/bi_gru/cnn+rnn_binglian/cnn+rnn_cuanlian/fasttext/att_bi_gru/rcnn,其中前面四个模型只有create_model函数不同,其余相同,fasttext和rcnn增加了…☆23Updated 6 years ago
- Multilabel classification based on TextCNN and Attention☆77Updated 4 years ago
- CNN-BiGRU-Attention模型☆89Updated 2 years ago
- 自注意力与文本分类☆119Updated 6 years ago
- ☆166Updated 5 years ago
- ☆266Updated 2 years ago
- 利用keras搭建的胶囊网络(capsule network文本分类模型,包含RNN、CNN、HAN等,其中keras_utils包含了capsule层和attention层的keras实现☆77Updated 6 years ago
- LSTM, CNN, CNNLSTM, BiLSTM, MLP☆10Updated 7 years ago
- Lstm+Cnn 预训练词向量 文本分类☆102Updated 6 years ago
- SVM, FastText, TextCNN, BiGRU, CNN-BiGRU在短分本分类上的对比☆84Updated 6 years ago
- Text classification using different neural networks (CNN, LSTM, Bi-LSTM, C-LSTM).☆205Updated 6 years ago
- ☆75Updated 6 years ago
- BiLSTM 加普通Attention中文文本多分类Pytorch实现☆33Updated 4 years ago
- detect malicious URL and Request (Bi-LSTM、Bi-LSTM + CNN、CNN + Bi-LSTM、CNN + Bi-LSTM + CNN)☆59Updated 6 years ago
- mlp/rnn/gru + attention 实现文本情感分析☆22Updated 6 years ago
- Tensorflow Implementation of "Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification" (ACL 2016)☆434Updated 6 years ago
- 基于LSTM+CNN的自然语言处理,基于单维LSTM、多维LSTM时序预测算法和多元线性回归算法的预测模型☆11Updated 4 years ago
- BiLSTM-CNN for Chinese text classification.☆18Updated 4 years ago
- 该工程是利用python3.6进行“特征提取+分类器”来实现美团评论 的文本二分类问题。在特征提取部分提取了6种特征,分类器选择了python里面的包xgboost和lightGBM分别实现提升树和GBDT(梯度提升决策树)。☆90Updated 5 years ago
- 使用分层注意力机制 HAN + 多任务学习 解决 AI Challenger 细粒度用户评论情感分析 。https://challenger.ai/competition/fsauor2018☆58Updated 5 years ago
- ☆47Updated 6 years ago
- 由时间空间成对组成的轨迹序列,通过循环神经网络lstm,自编码器auto-encode,时空密度聚类st-dbscan做异常检测☆70Updated 5 years ago
- 主要是实现nlp常用网络以及结果比较,各模型的优劣势,如:FastText,TextCNN,TextRNN,TextRCNN,BiLSTM,Seq2seq,BERT,Transformer,ELMo以及Attention机制等等。☆45Updated 5 years ago
- 文本分类之特征选择☆11Updated 7 years ago