wqk666999 / CNN-LSTM-Attention
使用卷积神经网络-长短期记忆网络(bi-LSTM)-注意力机制对股票收盘价进行回归预测。The convolution neural network, short-term memory network and attention mechanism are used to predict the closing price.
☆273Updated last year
Alternatives and similar repositories for CNN-LSTM-Attention:
Users that are interested in CNN-LSTM-Attention are comparing it to the libraries listed below
- Use BPNN and LSTM to forecast stock price. 使用BP神经网络和LSTM预测股票价格,注释拉满。☆194Updated 2 years ago
- CNN+LSTM+Attention predict stock☆53Updated 3 years ago
- CNN+BiLSTM+Attention Multivariate Time Series Prediction implemented by Keras☆666Updated 5 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆190Updated 5 years ago
- 基于pytorch搭建多特征LSTM时间序列预测☆166Updated 2 years ago
- ☆18Updated 3 years ago
- 多元多步时间序列的LSTM模型预测——基于Keras☆80Updated 3 years ago
- CEEMDAN_LSTM is a Python project for decomposition-integration forecasting models based on EMD methods and LSTM.☆254Updated 2 months ago
- 使用随机森林、bp神经网络、LSTM神经网络、GRU对股票收盘价进行回归预测。Random forest, BP neural network, LSTM neural network and GRU are used to predict the closing pric…☆53Updated 4 years ago
- 使用LSTM、GRU、BPNN进行时间序列预测。Using LSTM\GRU\BPNN for time series forecasting. (Pytorch Edition)☆57Updated 4 years ago
- EEMD、LSTM、time series prediction、DO、Deep Learning☆86Updated 3 years ago
- ☆26Updated 2 years ago
- PyTorch实现的Informer (Informer:用于长序列时间序列预测☆25Updated 2 years ago
- 基于统计学的时间序列预测(AR,ARM).☆271Updated 4 years ago
- 基于LSTM的多变量时间序列预测☆19Updated last year
- used for Stock Prodiction&power prediction&Traffic prediction by ARIMA,xgboost,RNN,LSTM,TCN☆108Updated 5 years ago
- (pytorch)time_series_data-prediction-with-gru-and-lstm☆45Updated 3 years ago
- ☆30Updated last year
- Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction☆351Updated 3 years ago
- stock predict with MLP,CNN,RNN,LSTM,Transformer and Transformer-LSTM☆252Updated 3 years ago
- 基于VMD-Attention-LSTM的时间序列预测模型(代码仅使用了一个较小数据集的训练及预测,内含使用使用逻辑,适合初学者观看,模型结构是可行的,有能力的请尝试使用更大的数据集训练)☆58Updated 2 years ago
- ☆246Updated last year
- 建立SARIMA-LSTM混合模型预测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆78Updated 6 years ago
- CEEMDAN-VMD-LSTM Forecasting model (a light version of CEEMDAN_LSTM)☆88Updated 2 years ago
- the extension of https://github.com/philipperemy/keras-attention-mechanism , create a new scipt to add attetion to input dimensions rath…☆78Updated 9 months ago
- Basic RNN, LSTM, GRU, and Attention for time-series prediction☆170Updated 6 months ago
- Paper-Reproduce: (ESWA) Forecasting the realized volatility of stock price index: A hybrid model integrating CEEMDAN and LSTM☆62Updated last year
- 使用bp神经网络预测股票价格。BP neural network is used to predict the stock price.☆36Updated 4 years ago
- transformer/self-attention for Multidimensional time series forecasting 使用transformer架构实现多维时间预测☆234Updated last year
- 使用多种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)进行电力系统负荷预测/电力预测。通过一个简单的例子。A variety of algorithms (linear regression, random forest, support vecto…☆163Updated 4 years ago