yhaofeng / finance_transformerLinks
通过修改transformer使其可以预测金融时间序列
☆38Updated 4 years ago
Alternatives and similar repositories for finance_transformer
Users that are interested in finance_transformer are comparing it to the libraries listed below
Sorting:
- 多元多步时间序列的LSTM模型预测——基于Keras☆90Updated 4 years ago
- 使用改良的Transformer模型应用于多维时间序列的分类任务上☆94Updated 4 years ago
- 使用卷积神经网络-长短期记忆网络(bi-LSTM)-注意力机制对股票收盘价进行回归预测。The convolution neural network, short-term memory network and attention mechanism are used to…☆309Updated last year
- transformer/self-attention for Multidimensional time series forecasting 使用transformer架构实现多维时间预测☆238Updated 2 years ago
- 使用LSTM、GRU、BPNN进行时间序列预测。Using LSTM\GRU\BPNN for time series forecasting. (Pytorch Edition)☆59Updated 4 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆200Updated 5 years ago
- 基于pytorch搭建多特征LSTM时间序列预测☆175Updated 3 years ago
- 基于pytorch实现的时间序列预测训练框架,各个部分模块化,方便修改模型。包含时间序列预测模型、训练、验证、测试、可视化、onnx导出、onnx推理。☆52Updated last month
- Codes for time series forecast☆146Updated 5 years ago
- 客流量时间序列预测模型☆130Updated 3 years ago
- ☆258Updated last year
- used for Stock Prodiction&power prediction&Traffic prediction by ARIMA,xgboost,RNN,LSTM,TCN☆113Updated 5 years ago
- 建立SARIMA-LSTM混合模型预测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆84Updated 7 years ago
- 双塔模型,打比赛用。解决多维时间序列的分类预测任务☆35Updated 3 years ago
- ☆69Updated 2 years ago
- 基于统计学的时间序列预测(AR,ARM).☆294Updated 5 years ago
- 多模态股价预测系统☆19Updated 3 years ago
- TensorFlow Probability;Time series model☆127Updated 3 years ago
- Deep learning PyTorch library for time series forecasting☆131Updated 2 years ago
- ☆42Updated 5 years ago
- 使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM…☆46Updated 5 years ago
- CNN+BiLSTM+Attention Multivariate Time Series Prediction implemented by Keras☆746Updated 5 years ago
- This project uses jqdata to forecast the price of Chinese stock. The methods used include LSTM, LSTM_CNN, CNN_ LSTM, AdaBoost, random fo…☆30Updated 4 years ago
- 使用LSTM、ANN网络进行时间序列的多步预测。一般情况下机器学习算法在进行时间序列预测时采取一步预测的方法。该段代码将其拓展到多步预测的情形。主要改进在于数据的构建。LSTM and ANN are used to predict the time series. In …☆16Updated 5 years ago
- ☆108Updated 4 years ago
- This is the PyTorch implementation of TPA-LSTM☆60Updated 6 years ago
- 不同时间序列预测方法对上海旅游规模进行预测☆19Updated 6 years ago
- 金融时间序列(预测分析 / 相似度 / 数据处理)☆265Updated last year
- 深度学习以进行时间序列预测☆714Updated 5 years ago
- CNN-BiGRU-Attention模型☆102Updated 3 years ago