liangyiting / ML-competetion
参加魔镜杯风控算法大赛编写的程序。比赛要求根据国内网络借贷行业的贷款风险数据,包括信用违约标签、借款人特征、借款人网络行为原始数据,评判用户预期违约率,建立用户信用评分模型,模型性能用AUC值评判。算法由GBDT模型、logistic模型构成。
☆18Updated 5 years ago
Related projects ⓘ
Alternatives and complementary repositories for ML-competetion
- 基于互联网金融平台2015年度贷款数据完成信贷违约预测模型,该模型可以作为信贷平台预测违约借款人的参考☆68Updated 6 years ago
- python金融风控评分卡模型和数据分析微专业课包含《python信用评分卡建模(附代码)》,《python风控建模实战lendingClub》,《金融现金贷用户数据分析和画像》三套课程系列,共计250节课左右,录制时间超过3年,定期更新。这套微专业课程是互联网上最全,最专…☆59Updated 3 years ago
- 智能风控 python金融风险管理与评分卡建模 数据和代码☆20Updated 2 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆33Updated 5 years ago
- 零基础入门金融风控-贷款违约预测☆32Updated 4 years ago
- Python金融大数据风控建模实战:基于机器学习源代码☆65Updated 3 years ago
- 人工智能社会保险反欺诈分析☆30Updated 6 years ago
- kaggle贷款违约预测☆35Updated 6 years ago
- 人工智能Python全栈工程师 人工智能时代已经来临,再不学习就会被淘汰! python考试,已经被列为国家计算机二级考试 python课程,已经被浙江的中学列为必修课内容之一 python课程,已经被山东的小学列为选修课课程之一 零基础? 怕啥,君社教育来帮你! Pyt…☆97Updated 3 years ago
- 本赛题旨在运用有效的金融科技和大数据系统,分析涉赌涉诈资金交易新方式,持续优化风险监测模型,通过赛题提供的涉赌涉诈黑名单、白名单及用于训练的相关交易流水数据集,构建涉赌涉诈账户算法识别模型,全面排查存量风险。A榜排名11/1594,B榜排名13/1594。☆41Updated last year
- 风控建模评分报告☆11Updated 4 years ago
- 金融反欺诈预测系统,技术涉及Vue3、Flask、XGBoost等。本项目提供了完整的Web系统,系统功能包括信贷数据分析、信贷欺诈数据检测、用户历史预测记录、用户数据管理等。项目整体并不复杂,适合新手练手学习机器学习与Web系统的结合。☆36Updated 2 years ago
- 数据分析师的进阶之路,我目前的知识体系,后续继续补充~☆46Updated 5 years ago
- 大数据竞赛项目实战, 内容涵盖: Kaggle、阿里天池大数据、腾讯大数据、京东大数据、DataCastle大数据竞赛等等☆57Updated 5 years ago
- 根据用户数据以及消费行为数据,使用Python建立分类模型,通过评估客户流失的风险来预测客户流转情况,找到对客户影响较大的因素,进而挽留客户☆9Updated 4 years ago
- 机器学习实践:贷款违约预测☆33Updated 5 years ago
- 使用决策树进行客户流失预测分析☆10Updated 6 years ago
- 交易欺诈作为信用卡行业面临的主要贷后风险业务问题,每年都使信用卡行业遭受巨额损失。基于大数据机器学习开发出高效的交易欺诈识别模型一直是金融行业的主要挑战之一。本次大赛以此作为主题☆40Updated 5 years ago
- 基于真实业务上手数据挖掘(银行流失预警):数据的处理、LightGBM、skLearning包(里面含有:GridSearchCV寻找最优参、StratifiedKFold分层5折切分、_test_Split单次数据切分等)、叠层模型融合、画AUC图、画混淆矩阵图,并输出预…☆86Updated 2 years ago
- 北京二手房房价分析和预测☆50Updated 6 years ago
- python数据分析基础☆77Updated 8 months ago
- 构建基于逻辑回归的评分卡模型☆43Updated 5 years ago
- 银行客户流失预警模型☆42Updated 6 years ago
- Some case of MeachineLearning and DataMining(一些机器学习与数据挖掘的实战案例)☆52Updated 4 years ago
- 问题定义,下载数据,观察结构,找最相关部分特征; 除去异常值,填充缺省值,部分特征正态化,特征编码向量化,增加新特征; 定义评估标准,选择表现好的几个模型,模型参数最优化,stacking模型融合。最终误差降低到0.101左右。详细介绍见https://zhuanlan.z…☆15Updated 5 years ago
- 利用大数据与人工智能分析预测金融市场☆61Updated last year
- 用机器学习建立贷款用户风控模型☆25Updated 6 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆24Updated 5 years ago
- 近年来,随着微信、微博、市长信箱、阳光热线等网络问政平台逐步成为政府了解民意、汇聚民智、凝聚民气的重要渠道,各类社情民意相关的文本数据量不断攀升,给以往主要依靠人工来进行留言划分和热点整理的相关部门的工作带来了极大挑战。同时,随着大数据技术的发展,建立基于自然语言处理技术的…☆30Updated 4 years ago
- Python3数据分析与挖掘建模实战 学习代码☆18Updated 6 years ago