Minerva-J / MachineLearning
☆14Updated 4 years ago
Alternatives and similar repositories for MachineLearning:
Users that are interested in MachineLearning are comparing it to the libraries listed below
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 5 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- 基于自构造函数的特征提取评分项目(缺失值处理,单变量相关性分析,特征评分,降维)☆15Updated 7 years ago
- Stacking classification and regression☆22Updated 5 years ago
- LR / SVM / XGBoost / RandomForest etc.☆28Updated 4 years ago
- 数据预处理之缺失值处理,特征选择☆21Updated 5 years ago
- 《机器学习之类别不平衡问题》文章代码☆45Updated 6 years ago
- 类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容☆36Updated 4 years ago
- 整理所有特征工程用到的方法,为了复用☆10Updated 4 years ago
- https://www.kaggle.com/c/m5-forecasting-accuracy/overview/☆12Updated 4 years ago
- ☆20Updated 5 years ago
- cingtiye / Convolutional-Bi-Directional-LSTM-Networks-and-feature-based-gated-recurrent-unit-networks☆14Updated 5 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆115Updated 4 years ago
- 《智能风控——原理、算法与工程实践》☆26Updated 3 years ago
- top3-solution☆10Updated 4 years ago
- Comparing XGBoost, CatBoost and LightGBM on TimeSeries Regression (RMSE, R2, AIC) on two different TimeSeries datasets.☆22Updated 5 years ago
- Kaggle 项目实战(教程) = 文档 + 代码 + 视频(欢迎参与)☆10Updated 5 years ago
- 在sklearn下,几种常用的特征选择方法☆40Updated 9 years ago
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆49Updated 5 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆66Updated this week
- 基于遗传算法的特征选择☆127Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- [译]tsfresh特征提取工具可提取的特征☆52Updated 5 years ago
- 2019年CCF智能信用评分大赛个人源码库。包含XGboost模型调参,特征筛选,训练等方案。同时包含stacking模型融合方案☆27Updated 4 years ago
- 智能制造工业AI Top2解决方案☆20Updated 6 years ago
- 第三届 Apache Flink 极客挑战赛暨AAIG CUP——电商推荐“抱大腿”攻击识别亚军代码方案☆28Updated 2 years ago
- 2020 第四届工业大数据创新竞赛-水电站入库流量预测-top1代码☆29Updated 4 years ago
- ☆13Updated 5 years ago
- machine_learning_study☆24Updated last year
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆55Updated 7 years ago