zhulei227 / Stacking_Ensembles
Stacking classification and regression
☆22Updated 5 years ago
Alternatives and similar repositories for Stacking_Ensembles:
Users that are interested in Stacking_Ensembles are comparing it to the libraries listed below
- 常用的特征选择方法☆68Updated 2 years ago
- 在sklearn下,几种常用的特征选择方法☆40Updated 8 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 5 years ago
- 数据预处理之缺失值处理,特征选择☆21Updated 5 years ago
- Kaggle 项目实战(教程) = 文档 + 代码 + 视频(欢迎参与)☆10Updated 5 years ago
- 基于遗传算法的特征选择☆126Updated 5 years ago
- ☆13Updated 5 years ago
- 《机器学习之类别不平衡问题》文章代码☆45Updated 6 years ago
- Sliver Solution (Top 2%) for Kaggle M5 Forecasting competition☆42Updated 3 months ago
- Exploratory Data Analysis, Dealing with Missing Values, Data Munging, Ensembled Regression Model using Stacked Regressor, XGBoost and mic…☆22Updated 7 years ago
- 分类类别不平衡,解决办法:采样(SMOTE和算法集成技术等)、阈值移动、调整代价或权重,附带信用卡诈骗案例☆21Updated 5 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆66Updated 6 years ago
- Examples of how to do feature engineering and Xgboost parameter tuning☆46Updated 8 years ago
- ☆21Updated 5 years ago
- ☆15Updated 4 years ago
- 2019年CCF智能信用评分大赛个人源码库。包含XGboost模型调参,特征筛选,训练等方案。同时包含stacking模型融合方案☆27Updated 4 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- 基于自构造函数的特征提取评分项目(缺失值处理,单变量相关性分析,特征评分,降维)☆15Updated 7 years ago
- A simple implementation of Transformer Encoder in keras. This repository also includes an example of Transformer as a classifier and its …☆16Updated 5 years ago
- Implementation of some machine learning algorithms☆41Updated 5 years ago
- Solutions of the forecast problem using Xgboost☆91Updated 6 years ago
- 通过科研人员论文项目等数据,训练识别导师/学生的分类器。代码包括特征选择基础、网格搜索确定特征选择方法参数、不平衡数据的处理(oversampling、undersampling)和pu-learning方法在此问题上的应用☆30Updated 5 years ago
- 西南财经大学“新网银行杯”数据科学竞赛 2/721☆31Updated 6 years ago
- 2019科大讯飞工程机械赛题-亚军☆38Updated 5 years ago
- 天池-印象盐城-汽车销量预测大赛☆35Updated 6 years ago
- [Data Castle 算法竞赛] 精品旅行服务成单预测 final rank 11☆93Updated 6 years ago
- 10th solution☆20Updated 5 years ago
- kaggle: IEEE-CIS Fraud Detection☆30Updated 5 years ago
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆49Updated 5 years ago