wanziw / ProductDemandForecast-TeddyCup11B
第十一届泰迪杯B题:产品订单的数据分析与需求预测 代码和数据
☆38Updated last year
Alternatives and similar repositories for ProductDemandForecast-TeddyCup11B
Users that are interested in ProductDemandForecast-TeddyCup11B are comparing it to the libraries listed below
Sorting:
- 尝试对比ARIMA、LSTM、SARIMA、GRA_LSTM、SARIMA_LSTM串联模型和SARIMA_LSTM并联模型的时序预测能力。☆13Updated 2 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆55Updated 5 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆62Updated 4 years ago
- 基于机器学习的信用风险评估模型,主要使用了Sklearn库,通过逻辑回归,向量机等模型,根据借款人的个人身份信息评估是否应当发放贷款。☆17Updated 2 years ago
- 基于python实现的数学建模相关代码,包含回归、分类、差分、聚类、时间序列分析、因子分析等☆69Updated last year
- 2021阿里云供应链大赛之需求预测及单级库存优化,B榜73名☆24Updated last year
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆14Updated 6 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆74Updated 4 years ago
- 基于Python:网络爬虫获取房价信息、数据的预处理和可视化、搭建基于房价预测的机器学习模型、房价预测。☆138Updated 9 months ago
- Python金融大数据风控建模实战:基于机器学习源代码☆80Updated 3 years ago
- 本项目以数据采集、处理、分析及数据可视化为项目流程,实现百万级电影数据离线处理与计算。功能包括python爬虫,Matplotlib、Echarts数据可视化、Mapreduce、hive数据统计、情感分析、词图云、电影票房与评分预测☆199Updated 3 years ago
- Python二手车价格预测案例数据挖掘☆29Updated 2 years ago
- 智能供应链分析,对顾客用rfm模型分类,用多种机器学习模型建模,进行欺诈订单预测,延迟发货预测,销售额预测,销售数量预测☆33Updated 4 years ago
- 纯python实现机器学习算法,非套用sk-learn☆105Updated 2 years ago
- 时间序列预测项目,采用不同的深度学习、机器学习算法,进行时间序列预测。包含不同预测算法与预测场景☆31Updated last year
- 逻辑回归、时间序列、KNN、朴素贝叶斯、决策树、关联规则、线性回归、神经网络、SVM、模型评估以及提高模型性能☆15Updated 6 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆165Updated 5 years ago
- 金融时间序列(预测分析 / 相似度 / 数据处理)☆236Updated 10 months ago
- 《python数据分析与挖掘实战》项目实践及拓展☆220Updated 6 years ago
- 爬虫+数据分析实战项目☆522Updated 6 years ago
- 基于pytorch实现的时间序列预测训练框架,各个部分模块化,方便修改模型。包含时间序列预测模型、训练、验证、测试、可视化、onnx导出、onnx推理。☆48Updated last week
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆41Updated last year
- 利用回归模型实现房价预测☆46Updated 6 years ago
- 基于深度学习的共享单车预测与调度解决方案,使用神经网络构建单车需求量与时间段和地理画像的关联,预测不同区域单车需求量;使用蚁群算法规划最优单车调度路径。☆98Updated 6 years ago
- 一个比较全面的文本挖掘过程。包含了利用机器学习和文本挖掘技术完成情感分析模型搭建;利用情感极性判断与程度计算来判断情感倾向;利用词频和TF-IDF挖掘出正负文本中的关键点情况;利用文本挖掘相关算法找到平台中用户讨论的集中点。☆34Updated 3 weeks ago
- 利用python对3000个数据利用机器学习算法建立模型,并预测未来客户信用风险。处理数据不均衡问题时采用了SMOTE过采样以及随机过采样技术;通过相关性分析进行特征选择;建模过程中用到了Logistic回归、SVM、随机森林、GBDT四种模型,并通过网格搜索法确定最优参数…☆31Updated 2 years ago
- 《Python统计与数据分析实战》课程代码,包含了大部分统计与非参数统计和数据分析的模型、算法。回归分析、方差分析、点估计、假设检验、主成分分析、因子分析、聚类分析、判别分析、对数线性模型、分位回归模型以及列联表分析、非参数平滑、非参数密度估计等各种非参数统计方法。☆330Updated 3 weeks ago
- 物流需求预测法的python实现(Logistics Demand Forecasting By Python),含移动平均法、指数平滑法、平滑系数的确认、结果输出到excel表、误差分析等☆35Updated 4 years ago
- 包含灰色预测模型:灰色单变量预测模型GM(1,1)模型,灰色多变量预测模型GM(1,N)模型,GM(1,N)幂模型,灰色多变量周期幂模型GM(1,N|sin)幂模型,以及灰色关联模型☆77Updated 2 years ago