Siddhartha80 / AI-Powered-Predictive-Maintenance-System-for-Vehicles-with-Real-Time-Data-Visualization-and-AnalysisLinks
Gradient Boosting Models on Real-Time Sensor Data for AI-Enhanced Vehicle Predictive Maintenance. By using a web-based interface to forecast maintenance requirements and part failure probabilities, proactive fleet management, cost optimisation, and efficient transportation are made possible.
☆16Updated 9 months ago
Alternatives and similar repositories for AI-Powered-Predictive-Maintenance-System-for-Vehicles-with-Real-Time-Data-Visualization-and-Analysis
Users that are interested in AI-Powered-Predictive-Maintenance-System-for-Vehicles-with-Real-Time-Data-Visualization-and-Analysis are comparing it to the libraries listed below
Sorting:
- 轴承故障诊断☆96Updated 3 years ago
- 基于深度学习的机械设备故障诊断方法研究☆44Updated 3 years ago
- 基于深度学习的滚动轴承故障诊断方法☆195Updated 6 years ago
- 基于注意力机 制的少量样本故障诊断 pytorch☆241Updated 2 months ago
- 一种轻量化故障诊断框架——LiConvFormer☆110Updated 8 months ago
- 基于无监督和迁移学习的旋转机械故障诊断☆33Updated 5 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆173Updated 3 years ago
- ☆99Updated 2 years ago
- 机械故障诊断公开数据集☆58Updated last year
- 基于可变形卷积和注意力机制的滚动轴承故障诊断☆45Updated 4 years ago
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆42Updated 2 years ago
- 基于机器学习的机械故障诊断☆18Updated last year
- ☆85Updated 2 years ago
- 利用西储大学开源的轴承故障数据,开发简单的人工神经网络,以实现对轴承故障的检测及识别。☆49Updated 4 years ago
- A transfer learning fault diagnosis repository covering popular algorithms☆275Updated last year
- 这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型具有优越的抗噪能力,可用于轴承的智能故障诊断。☆48Updated 2 years ago
- 基于CNN、特征螺旋排列、奇异值分解、Hankel矩阵的故障诊断方法☆10Updated 5 years ago
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆131Updated 6 months ago
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆45Updated 4 years ago
- The intelligent fault diagnosis of HNU IDG☆107Updated 2 years ago
- 1D-CNN Vibration Signal Bearing Fault Diagnosis☆55Updated last year
- Bearing fault diagnosis model based on MCNN-LSTM☆358Updated 2 years ago
- Leveraging multiple deep learning models for fault diagnosis☆32Updated 3 weeks ago
- PyTorch Implementation of "Understanding and Learning Discriminant Features based on Multiattention 1DCNN for Wheelset Bearing Fault Diag…☆27Updated last year
- A Rolling Bearing Fault Diagnosis Method Using Multi-Sensor Data and Periodic Sampling (pytorch)☆42Updated 2 years ago
- An Adaptive Multi-Channel Attention Method for Fault Diagnosis☆17Updated last year
- Deep discriminative transfer learning network for cross-machine fault diagnosis☆107Updated 8 months ago
- 采用一种包含加权水平可见图(WHVG)的图卷积网络(GCN),对采样的轴承震动时间序列数据分析,进行滚动轴承故障诊断。其中,对HVG中两节点的边,以节点距离的倒数作为权重进行加权,以削弱噪声节点对其他距离较远节点的影响。☆40Updated 2 years ago
- Fault detection based on deep learning (CWRU Dataset)☆29Updated 2 years ago
- ☆23Updated 3 years ago