Siddhartha80 / AI-Powered-Predictive-Maintenance-System-for-Vehicles-with-Real-Time-Data-Visualization-and-AnalysisLinks
Gradient Boosting Models on Real-Time Sensor Data for AI-Enhanced Vehicle Predictive Maintenance. By using a web-based interface to forecast maintenance requirements and part failure probabilities, proactive fleet management, cost optimisation, and efficient transportation are made possible.
☆18Updated 6 months ago
Alternatives and similar repositories for AI-Powered-Predictive-Maintenance-System-for-Vehicles-with-Real-Time-Data-Visualization-and-Analysis
Users that are interested in AI-Powered-Predictive-Maintenance-System-for-Vehicles-with-Real-Time-Data-Visualization-and-Analysis are comparing it to the libraries listed below
Sorting:
- 基于深度学习的机械设备故障诊断方法研究☆39Updated 3 years ago
- 基于CNN、特征螺旋排列、奇异值分解、Hankel矩阵的故障诊断方法☆10Updated 5 years ago
- 轴承故障诊断☆88Updated 2 years ago
- 机械故障诊断公开数据集☆57Updated last year
- Using LSTM to predict bearings' remaining useful life☆48Updated 4 years ago
- 基于深度学习的机械故障诊断☆34Updated last year
- 基于无监督和迁移学习的旋转机械故障诊断☆32Updated 5 years ago
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆40Updated last year
- FWA-DBN-ELM fault diagnosis 故障诊断 烟花算法优化DBN-ELM的故障诊断☆29Updated 2 years ago
- PyTorch implementation of remaining useful life prediction with long-short term memories (LSTM), performing on NASA C-MAPSS data sets. Pa…☆151Updated 3 years ago
- 一种轻量化故障诊断框架——LiConvFormer☆103Updated 5 months ago
- Leveraging multiple deep learning models for fault diagnosis☆29Updated 2 months ago
- RUL prediction for Turbofan Engine (CMAPSS dataset) using CNN☆114Updated 4 years ago
- 1D-CNN Vibration Signal Bearing Fault Diagnosis☆52Updated last year
- We have developed an innovative deep learning model, PSECNet, for the prediction of bearing Remaining Useful Life (RUL) on the IEEE 2012 …☆27Updated 11 months ago
- 基于深度学习的滚动轴承故障诊断方法☆191Updated 6 years ago
- Using transformer to realize Bearing Fault Diagnosis☆62Updated 2 years ago
- One model for RUL and fault prognostic prediction on XJTU bearing dataset☆93Updated 5 years ago
- 基于机器学习的机械故障诊断☆18Updated last year
- Real time tool wear monitoring method based on a TCN model for PHM-2010 Dataset.☆10Updated 2 years ago
- TCN-LSTM Motor Vibration Fault Diagnosis Model☆28Updated 10 months ago
- : Faulty and healthy gear box Data sets need to be analyzed in detail. Here, we created this dataset for those who do research in wind tu…☆54Updated 7 years ago
- ☆66Updated 4 years ago
- ☆23Updated 2 years ago
- 采用一种包含加权水平可见图(WHVG)的图卷积网络(GCN),对采样的轴承震动时间序列数据分析,进行滚动轴承故障诊断。其中,对HVG中 两节点的边,以节点距离的倒数作为权重进行加权,以削弱噪声节点对其他距离较远节点的影响。☆41Updated 2 years ago
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆121Updated 3 months ago
- Python codes “Jupyter notebooks” for the paper entitled "A Hybrid Method for Condition Monitoring and Fault Diagnosis of Rolling Bearings…☆78Updated last year
- fault_diagnosis☆18Updated 6 years ago
- ☆95Updated 2 years ago
- Fault Diagnosis on Bearing Dataset☆32Updated 5 years ago