ShydowLi / Machine-Learning-With-R-Links
逻辑回归、时间序列、KNN、朴素贝叶斯、决策树、关联规则、线性回归、神经网络、SVM、模型评估以及提高模型性能
☆15Updated 6 years ago
Alternatives and similar repositories for Machine-Learning-With-R-
Users that are interested in Machine-Learning-With-R- are comparing it to the libraries listed below
Sorting:
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆14Updated 7 years ago
- 《Python数据预处理技术与实践》源码下载☆207Updated 5 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆180Updated 5 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆80Updated 5 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- 机器学习算法经典案例☆110Updated 4 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆286Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆56Updated 5 years ago
- 用 jupyter notebook做的一些机器学习项目☆87Updated 5 years ago
- 集成学习Stacking方法详解☆76Updated 5 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆118Updated 4 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆83Updated 5 years ago
- Python 基于BP神经网络实现鸢尾花的分类☆354Updated 5 years ago
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆44Updated last year
- 《Python统计与数据分析实战》课程代码,包含了大部分统计与非参数统计和数据分析的模型、算法。回归分析、方差分析、点估计、假设检验、主成分分析、因子分析、聚类分析、判别分析、对数线性模型、分位回归模型以及列联表分析、非参数平滑、非参数密度估计等各种非 参数统计方法。☆348Updated 4 months ago
- python实现的随机森林☆102Updated 3 years ago
- python 用GA算法优化BP神经网络☆159Updated 4 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆156Updated 8 years ago
- 粒子群算法优化支持向量机☆139Updated 3 years ago
- 【Numpy 手写实现】SVM 支持向量机 | KNN K近邻 | Kmeans | Logistic Regression 逻辑回归 | Maximum Entropy 最大熵 | Naive Bayes 朴素贝叶斯 | Perception 感知机 | Decision…☆210Updated 5 years ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆147Updated 4 years ago
- 模型优化调参---网格搜索(五折交叉验证)☆11Updated 6 years ago
- 利用回归模型实现房价预测☆46Updated 6 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆194Updated 5 years ago
- 基于pytorch框架,针对文本分类的机器学习项目,集成多种算法(xgboost, lstm, bert, mezha等等),提供基础数据集,开箱即用,方便自己二次拓展,持续更新☆33Updated 2 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆48Updated 6 years ago
- Python数据科学系专栏(pandas、Numpy、SKlearn、Matplotlib)、实战项目(代码、讲解、数据集)☆220Updated last year
- 决策树分类与回归模型的实现和可视化☆17Updated 3 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆241Updated 6 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago