ShydowLi / Machine-Learning-With-R-Links
逻辑回归、时间序列、KNN、朴素贝叶斯、决策树、关联规则、线性回归、神经网络、SVM、模型评估以及提高模型性能
☆15Updated 6 years ago
Alternatives and similar repositories for Machine-Learning-With-R-
Users that are interested in Machine-Learning-With-R- are comparing it to the libraries listed below
Sorting:
- 数据特 征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- Python 基于BP神经网络实现鸢尾花的分类☆369Updated 5 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆188Updated 5 years ago
- 《Python数据预处理技术与实践》源码下载☆210Updated 6 years ago
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆14Updated 7 years ago
- 用 jupyter notebook做的一些机器学习项目☆86Updated 6 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆89Updated 5 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆83Updated 5 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆287Updated 5 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆118Updated 5 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆57Updated 5 years ago
- 《Python统计与数据分析实战》课程代码,包含了大部分统计与非参数统计和数据分析的模型、算法。回归分析、方差分析、点估计、假设检验、主成分分析、因子分析、聚类分析、判别分析、对数线性模型、分位回归模型以及列联表分析、非参数平滑、非参数密度估计等各种非参数统计方法。☆369Updated 8 months ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆151Updated 4 years ago
- 机器学习算法经典案例☆112Updated 4 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆245Updated 6 years ago
- 【Numpy 手写实现】SVM 支持向量机 | KNN K近邻 | Kmeans | Logistic Regression 逻辑回归 | Maximum Entropy 最大熵 | Naive Bayes 朴素贝叶斯 | Perception 感知机 | Decision…☆215Updated 5 years ago
- 利用回归模型实现房价预测☆50Updated 7 years ago
- 2019年北京高校数学建模校际联赛B题的模型代码:NLP情感分析+改进熵值法+改进灰色关联度分析☆28Updated 2 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆50Updated 6 years ago
- 集成学习Stacking方法详解☆78Updated 6 years ago
- python实现的随机森林☆110Updated 3 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆65Updated 5 years ago
- 本系列代码主要是作者Python人工智能之TensorFlow的系列博客,涉及回归神经网络、CNN、RNN、TensorFboard等内容。基础性代码,希望对您有所帮助。☆106Updated 8 months ago
- python 用GA算法优化BP神经网络☆163Updated 4 years ago
- 利用爬虫获取58同城的二手房信息,选取特征并对数据进行预处理,利用机器学习算法给出不同地段的租房推荐。☆15Updated 6 years ago
- 常见的数据预处理,包括数据加载、缺失值&异常值处理、描述性变量转换为数值型、训练测试集划分、数据规范化☆47Updated 2 years ago
- 使用支持向量机,感知机,随机森林,决策树,k近邻,logistic,LSTM,bagging,boosting,集成等多种常见算法实现多分类任务(三分类)。Support vector machine, perceptron, random forest, decision…☆18Updated 5 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆158Updated 9 years ago
- 支持向量机的python实现☆49Updated 10 years ago
- 基于深度学习的共享单车预测与调度解决方案,使用神经网络构建单车需求量与时间段和地理画像的关联,预测不同区域单车需求量;使用蚁群算法规划最优单车调度路径。☆110Updated 6 years ago