saiwaiyanyu / knowledge-graph-nlp-in-action
从模型训练到部署,实战知识图谱(Knowledge Graph)&自然语言处理(NLP)。涉及 Tensorflow, Bert+Bi-LSTM+CRF,Neo4j等 涵盖 Named Entity Recognition,Text Classify,Information Extraction,Relation Extraction 等任务。
☆90Updated 5 years ago
Alternatives and similar repositories for knowledge-graph-nlp-in-action:
Users that are interested in knowledge-graph-nlp-in-action are comparing it to the libraries listed below
- 实体识别和关系抽取的联合模型☆123Updated 6 years ago
- 爬取百度百科词条,抽取三元组,构建知识图谱☆35Updated 5 years ago
- 中文关系抽取☆136Updated 6 years ago
- 中文关系抽取☆94Updated 3 years ago
- CCKS 2020:新冠知识图谱构建与问答评测(四)新冠知识图谱问答评测☆217Updated 4 years ago
- 事件知识图谱构建相关的论文, 包含事件抽取、事件关系识别等任务☆81Updated last year
- 限定领域的三元组抽取的一次尝试,本文将会介绍笔者在2019语言与智能技术竞赛的三元组抽取比赛方面的一次尝试。☆132Updated 2 years ago
- 抽取中文三元组☆94Updated 2 years ago
- 知识图谱三元组抽取(实体-关系-实体,实体-属性-属性值)☆106Updated 3 years ago
- 基于知识图谱的问答系统☆135Updated 5 years ago
- 知识图谱初探,关系抽取,实体抽取,基于kb的问答,基于es的问答,知识图谱可视化☆60Updated 5 years ago
- 2019百度的关系抽取比赛,使用Pytorch实现苏神的模型,F1在dev集可达到0.75,联合关系抽取,Joint Relation Extraction.☆313Updated 4 years ago
- 事件抽取相关算法汇总☆125Updated 5 years ago
- 基于知识图谱的问答系统☆72Updated 6 years ago
- 基于BIO模式的序列标注工具-可用于命名实体识别、事件触发词识别等任务的数据标注☆72Updated 4 years ago
- 将bert模型应用到问答系统中来,一者学习知识图谱的基本操作,二简单搭建问答系统的基本框架,三将词向量、bert模型实践应用☆59Updated 5 years ago
- 金融知识图谱构建☆138Updated 6 years ago
- Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的端到端的联合模型。☆287Updated 5 years ago
- 本项目用于展示三元组抽取后形成的知识图谱,包括几本小说的实体关系,以及README.md,介绍这方面的一篇文章。☆196Updated 4 years ago
- 基于bert的kbqa系统☆151Updated 2 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆137Updated 2 years ago
- 农业领域知识图谱的构建,包括数据爬取(百度百科)、数据分类、利用结构化数据生成三元组、非结构化数据的分句(LTP),分词(jieba),命名实体识别(LTP)、基于依存句法分析(主谓关系等)的关系抽取和利用neo4j生成可视化知识图谱☆249Updated 5 years ago
- SEBERTNets:一种面向金融领域的事件主体抽取方法☆193Updated 2 years ago
- 哈工大bert上fine turning ,中文人物关系抽取任务准确率0.97☆117Updated 5 years ago
- 基于transformers的三元组抽取☆36Updated 3 years ago
- A trial of kbqa based on bert for NLPCC2016/2017 Task 5 (基于BERT的中文知识库问答实践,代码可跑通)☆269Updated 6 years ago
- 本项目是利用深度学习技术来构建知识图谱方向上的一次尝试,作为开放领域的关系抽取,算是笔者的一次创新,目前在这方面的文章和项目都很少。☆309Updated last year
- 毕业设计,基于事理图谱的事件推理系统☆69Updated 4 years ago
- 中文命名实体识别NER。用keras实现BILSTM+CRF、IDCNN+CRF、BERT+BILSTM+CRF进行实体识别。结果当然是BERT+BILSTM+CRF最好啦。☆288Updated 5 years ago
- 根据自己搭的 LTP 服务器,实现:分词、词性标注、命名实体识别、依存句法分析、语义角色标、命名实体的抽取:人名,地名,机构名、三元组的抽取:主谓宾,动宾关系,介宾关系,(实体1,关系,实体2)☆145Updated 7 years ago