WangShengguang / ccks-2020
CCKS 2020:新冠知识图谱构建与问答评测(四)新冠知识图谱问答评测
☆216Updated 4 years ago
Alternatives and similar repositories for ccks-2020:
Users that are interested in ccks-2020 are comparing it to the libraries listed below
- 2019百度的关系抽取比赛,使用Pytorch实现苏神的模型,F1在dev集可达到0.75,联合关系抽取,Joint Relation Extraction.☆313Updated 4 years ago
- 本项目是利用深度学习技术来构建知识图谱方向上的一次尝试,作为开放领域的关系抽取,算是笔者的一次创新,目前在这方面的文章和项目都很少。☆305Updated last year
- 限定领域的三元组抽取的一次尝试,本文将会介绍笔者在2019语言与智能技术竞赛的三元组抽取比赛方面的一次尝试。☆133Updated last year
- 中文关系抽取☆135Updated 6 years ago
- 基于知识图谱的问答系统☆134Updated 4 years ago
- 中文知识库问答代码,CCKS2019 CKBQA评测第四名解决方案☆476Updated 3 years ago
- Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的端到端的联合模型。☆286Updated 5 years ago
- 本项目用于展示三元组抽取后形成的知识图谱,包括几本小说的实体关系,以及README.md,介绍这方面的一篇文章。☆192Updated 4 years ago
- 基于远监督的中文关系抽取☆383Updated 3 years ago
- baidu aistudio event extraction competition☆224Updated last year
- 实体识别和关系抽取的联合模型☆121Updated 6 years ago
- SEBERTNets:一种面向金融领域的事件主体抽取方法☆193Updated 2 years ago
- 从模型训练到部署,实战知识图谱(Knowledge Graph)&自然语言处理(NLP)。涉及 Tensorflow, Bert+Bi-LSTM+CRF,Neo4j等 涵盖 Named Entity Recognition,Text Classify,Informatio…☆89Updated 5 years ago
- A trial of kbqa based on bert for NLPCC2016/2017 Task 5 (基于BERT的中文知识库问答实践,代码可跑通)☆269Updated 5 years ago
- 基于bert的kbqa系统☆149Updated 2 years ago
- 中文医学知识图谱命名实体识别,包括bi-LSTM+CRF,transformer+CRF等模型☆238Updated 5 years ago
- 中文wiki百科QA阅读理解问答系统,使用了CCKS2016数据的NER模型和CMRC2018的阅读理解模型,还有W2V词向量搜索,使用torchserve部署☆90Updated 3 years ago
- 中文命名实体识别NER。用keras实现BILSTM+CRF、IDCNN+CRF、BERT+BILSTM+CRF进行实体识别。结果当然是BERT+BILSTM+CRF最好啦。☆286Updated 5 years ago
- CCKS 2019 中文短文本实体链指比赛技术创新奖解决方案☆409Updated last year
- 中文关系抽取☆94Updated 3 years ago
- 基于知识图谱的中文问答系统(EA-CKGQA)☆37Updated 5 years ago
- ccks2020 NER competitions☆116Updated 4 years ago
- 抽取中文三元组☆96Updated last year
- 事件抽取相关算法汇总☆124Updated 5 years ago
- 事件知识图谱构建相关的论文, 包含事件抽取 、事件关系识别等任务☆82Updated last year
- 医疗实体识别☆179Updated 4 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆183Updated 2 years ago
- 实体关系抽取,使用了百度比赛的数据集。使用pytorch实现MultiHeadJointEntityRelationExtraction,包含Bert、Albert、gru的使用,并且添加了对抗训练。最后使用Flask和Neo4j图数据库对模型进行了部署☆120Updated last year
- 一个关于百度2019语言与智能技术竞赛信息抽取 (http://lic2019.ccf.org.cn/kg) 模型, 模型采用BERT+CNN。DEMO地址 https://github.com/Wangpeiyi9979/InformationExtractionDem…☆187Updated 5 years ago
- 结合BERT+GRU+ATT模型,对自己收集的人物关系数据进行模型训练,用于人物关系抽取。☆318Updated last year