jkszw2014 / bert-kbqa-NLPCC2017
A trial of kbqa based on bert for NLPCC2016/2017 Task 5 (基于BERT的中文知识库问答实践,代码可跑通)
☆269Updated 5 years ago
Alternatives and similar repositories for bert-kbqa-NLPCC2017:
Users that are interested in bert-kbqa-NLPCC2017 are comparing it to the libraries listed below
- 基于远监督的中文关系抽取☆383Updated 3 years ago
- Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的端到端的联合模型。☆286Updated 5 years ago
- KBQA based on the NLPCC2016 dataset, including reimplementation of NLPCC2016 best team`s QA.☆317Updated 5 years ago
- 2019百度的关系抽取比赛,使用Pytorch实现苏神的模型,F1在dev集可达到0.75,联合关系抽取,Joint Relation Extraction.☆313Updated 4 years ago
- CCKS 2019 中文短文本实体链指比赛技术创新奖解决方案☆409Updated last year
- 基于知识库的问答:seq2seq模型实践☆355Updated 4 years ago
- 中文知识库问答代码,CCKS2019 CKBQA评测第四名解决方案☆476Updated 3 years ago
- 一个关于百度2019语言与智能技术竞赛信息抽取 (http://lic2019.ccf.org.cn/kg) 模型, 模型采用BERT+CNN。DEMO地址 https://github.com/Wangpeiyi9979/InformationExtractionDem…☆187Updated 5 years ago
- Comparison of Chinese Named Entity Recognition Models between NeuroNER and BertNER☆328Updated 5 years ago
- 基于bert的kbqa系统☆148Updated 2 years ago
- 中文关系抽取☆135Updated 6 years ago
- Multiple-Relations-Extraction-Only-Look-Once. Just look at the sentence once and extract the multiple pairs of entities and their corresp…☆347Updated 5 years ago
- CCKS 2020:新冠知识图谱构建与问答评测(四)新冠知识图谱问答评测☆216Updated 4 years ago
- 2019年百度的三元组抽取比赛,一个baseline☆210Updated 5 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆183Updated 2 years ago
- 结合BERT+GRU+ATT模型,对自己收集的人物关系数据进行模型训练,用于人物关系抽取。☆318Updated last year
- 限定领域的三元组抽取的一次尝试,本文将会介绍笔者在2019语言与智能技术竞赛的三元组抽取比赛方面的一次尝试。☆133Updated last year
- 基于BI-LSTM+CRF的中文命名实体识别 Pytorch☆383Updated last year
- NER(命名实体识别)中文语料,一站式获取☆128Updated 5 years ago
- 实体识别和关系 抽取的联合模型☆121Updated 6 years ago
- 2019年百度的三元组抽取比赛,“科学空间队”源码☆767Updated 4 years ago
- baidu aistudio event extraction competition☆224Updated last year
- 基于Bi-GRU + CRF 的中文机构名、人名识别, 支持google bert模型☆167Updated 5 years ago
- 中文命名实体识别NER。用keras实现BILSTM+CRF、IDCNN+CRF、BERT+BILSTM+CRF进行实体识别。结果当然是BERT+BILSTM+CRF最好啦。☆286Updated 5 years ago
- WordMultiSenseDisambiguation, chinese multi-wordsense disambiguation based on online bake knowledge base and semantic embedding similarit…☆124Updated 6 years ago
- 本项目是利用深度学习技术来构建知识图谱方向上的一次尝试,作为开放领域的关系抽取,算是笔者的一次创新,目前在这方面的文章和项目都很少。☆305Updated last year
- Source code for ACL 2019 paper "Chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge"☆269Updated 4 years ago
- some baselines for lic2020 (http://lic2020.cipsc.org.cn/)☆218Updated 4 years ago
- SEBERTNets:一种面向金融领域的事件主体抽取方法☆193Updated 2 years ago
- 使用预训练语言模型ALBERT做中文NER☆470Updated 4 years ago