rwbfd / geek-training-campLinks
☆65Updated 3 years ago
Alternatives and similar repositories for geek-training-camp
Users that are interested in geek-training-camp are comparing it to the libraries listed below
Sorting:
- ☆193Updated 4 years ago
- ☆25Updated 4 years ago
- ☆68Updated 3 years ago
- 《机器学习:软件工程方法与实现》Method and implementation of machine learning software engineering☆187Updated 2 years ago
- 《TensorFlow 快速入门与实战》和《TensorFlow 2 项目进阶实战》课程代码与课件☆91Updated 4 years ago
- ☆246Updated 4 years ago
- ☆163Updated 5 years ago
- 500+ spark short code examples in jupyter notebook!☆101Updated 5 years ago
- Translation of the book,"Spark-The-Definitive-Guide", from English into Chinese. 书籍 《Spark权威指南》翻译☆102Updated 2 years ago
- 机器学习40讲☆27Updated 6 years ago
- source code of my blogs 😋😋☆395Updated 3 months ago
- 🤓 Important machine learning knowledge, each article deeply analyzes theoretical knowledge☆118Updated 5 years ago
- ☆55Updated 3 years ago
- ☆17Updated 2 years ago
- 极客时间:Machine Learning from Scratch(零基础实战机器学习)- 这套课程是我在传统机器学习时代,使用各种机器学习方法完成数据分析项目的尝试。这些经典机器学习方法不会过时,课程设计也算得上是认真而精彩。有些包的选择(如生存周期预测)已不大实用。☆203Updated 2 years ago
- 《统计学习方法》的代码实现☆86Updated 6 years ago
- 深度学习数学、模型结构和基础应用☆93Updated 3 years ago
- WeChat Official Accounts, zhihu and CSDN'blog code☆264Updated 5 years ago
- 《TensorFlow 快速入门与实战》和《TensorFlow 2 项目进阶实战》课程代码与课件☆467Updated 2 years ago
- A practical feature engineering handbook☆324Updated 4 years ago
- ☆46Updated 2 years ago
- 深度之眼《百面机器学习》训练营☆98Updated 5 years ago
- 学习tensorflow☆33Updated 4 years ago
- 2019年CCF大数据与计算智能大赛乘用车细分市场销量预测冠军解决方案☆259Updated 5 years ago
- 推荐系统从入门到实战☆167Updated 3 years ago
- A feature engineering kit for each issue, to give you a deeper and deeper understanding of the work of feature engineering!☆673Updated 4 years ago
- 主要存储Datawhale组队学习中“SQL”方向的资料。☆182Updated 3 years ago
- 统计学习方法训练营课程作业及答案,视频笔记在线阅读地址:https://relph1119.github.io/statistical-learning-method-camp☆196Updated 2 years ago
- ☆37Updated 5 years ago
- 本课程面对具有一定机器学习基础,但尚未入门的NLPer或经验尚浅的NLPer,尽力避免陷入繁琐枯燥的公式讲解中,力求用代码展示每个模型背后的设计思想,同时也会带大家梳理每个模块下的技术演变,做到既知树木也知森林。☆87Updated last year