DengYangyong / exam_annotation
☆36Updated 5 years ago
Alternatives and similar repositories for exam_annotation
Users that are interested in exam_annotation are comparing it to the libraries listed below
Sorting:
- 达观算法比赛ner任务,从重新训练bert,到finetune预测。☆75Updated 2 years ago
- Bert中文文本分类☆40Updated 6 years ago
- NLP Predtrained Embeddings, Models and Datasets Collections(NLP_PEMDC). The collection will keep updating.☆64Updated 5 years ago
- textcnn多标签文本分类☆37Updated 6 years ago
- 微调预训练语言模型,解决多标签分类任务(可加载BERT、Roberta、Bert-wwm以及albert等知名开源tf格式的模型)☆141Updated 4 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆47Updated 4 years ago
- ccks金融事件主体抽取☆72Updated 4 years ago
- GAIIC2022商品标题实体识别Baseline,使用GlobalPointer实现,线上0.80349☆53Updated 3 years ago
- 转换 https://github.com/brightmart/albert_zh 到google格式☆62Updated 4 years ago
- Baidu 95categories of multi-label test question classification☆26Updated 5 years ago
- Bert分类,语义相似度,获取句向量。☆64Updated 2 months ago
- ☆30Updated 5 years ago
- CCKS2020面向金融领域的小样本跨类迁移事件抽取baseline☆55Updated 2 years ago
- datagrand 2019 information extraction competition rank9☆130Updated 5 years ago
- 【梳理 】FDDC2018金融算法挑战赛02-A股上市公司公告信息抽取☆93Updated 6 years ago
- NLP的数据增强Demo☆47Updated 5 years ago
- 问答摘要与推理☆34Updated 5 years ago
- transformers implement (architecture, task example, serving and more)☆95Updated 3 years ago
- 参考NER,基于BERT的电商评论观点挖掘和情感分析☆41Updated 5 years ago
- BDCI2019-互联网金融新实体发现-第7名 (本可top3)☆18Updated 5 years ago
- 这是使用pytoch 实现的长文本分类器☆45Updated 5 years ago
- ☆90Updated 4 years ago
- 开课吧&后厂理工学院_百度NLP项目2:试题数据集多标签文本分类 Models: FastText TextCNN GCN BERT et al.☆48Updated 5 years ago
- 简单高效的Bert中文文本分类模型开发和部署☆26Updated 5 years ago
- CCF BDCI 金融信息负面及主体判定 冠军代码☆105Updated 5 years ago
- CCF-BDCI大数据与计算智能大赛-互联网金融新实体发现-9th☆54Updated 5 years ago
- CCKS2019评测任务五-公众公司公告信息抽取,第3名☆121Updated 5 years ago
- An implement of the paper of EDA for Chinese corpus.中文语料的EDA数据增强工具。NLP数据增强。论文阅读笔记。☆28Updated 6 years ago
- Just Code ! 针对面试训练算法题, 目前包括字节跳动面试题、 LeetCode 和剑指 offer ,持续扩容中☆18Updated 5 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆47Updated last year