px528 / AdaboostExample
AdaboostExample
☆43Updated 4 years ago
Related projects ⓘ
Alternatives and complementary repositories for AdaboostExample
- Simple Python Adaboost Implementation☆25Updated 4 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆51Updated 7 years ago
- The codes的K-means,FCM,谱聚类,DBSCAN,AP(AffinityPropagation),DPC聚类算法比较☆148Updated 7 years ago
- mnist classification with tensorflow ( nn, cnn, lstm, nlstm, bi-lstm, cnn-rnn)☆101Updated 7 years ago
- 利用深度RBM构建多分类模型☆19Updated 9 years ago
- HoG, PCA, PSO, Hard Negative Mining, Sliding Window, Edge Boxes, NMS☆170Updated 2 weeks ago
- some small codes about deep learning☆51Updated 6 years ago
- iris数据集的基本数据分析方法,包括KNN,LG,NB,SVM算法。☆43Updated 7 years ago
- 在sklearn下,几种常用的特征选择方法☆40Updated 8 years ago
- 卷积神经网络提取特征并用于SVM//www.cnblogs.com/chuxiuhong/p/6132814.html☆15Updated 6 years ago
- K-Means++(HCM), Fuzzy C-Means(FCM), Hierarchical Clustering, DBscan☆340Updated last year
- 风机叶片开裂故障预警解决方案☆30Updated 6 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- 支持向量机,Support Vector Machine(SVM),多类分类☆28Updated 7 years ago
- This project is the same with deeplearning.net, but the comment is written for chinese☆23Updated 8 years ago
- 2018年研究生数学建模F组题☆14Updated last year
- Stacking classification and regression☆21Updated 5 years ago
- 基于遗传算法的特征选择☆124Updated 4 years ago
- keras融合inception,vgg,residual_net做一个超快的迁移学习模型☆11Updated 6 years ago
- BPNN, SVC, SVR, CART, GSOM, LOF, K_MEANS, GRNN, LR, MLR☆19Updated 7 years ago
- Theano implementation of Cost-Sensitive Deep Neural Networks☆26Updated 6 years ago
- attempt to predict the stock price with BP neural network☆15Updated 7 years ago
- A feature extractor based on Python 3, Tensorflow, and Scikit-learn created to improve the SVM accuracy to classify the MNIST dataset fas…☆70Updated last year
- 基于PyTorch使用迁移学习完成项目☆58Updated 6 years ago
- Experimenting with RBMs using scikit-learn on MNIST and simulating a DBN using Keras.☆33Updated 7 years ago
- Basic algorithms about machine learnig☆49Updated 4 years ago
- There are some reproduced algorithms for learning from imbalanced data, including over-sampling,under-sampling and boosting☆11Updated last year
- 集成学习Stacking方法详解☆65Updated 5 years ago